• Title/Summary/Keyword: Nozzle operating parameter

Search Result 10, Processing Time 0.025 seconds

Analysis of drilling performance and shape for granite according to operating parameters of waterjet nozzles (복수의 워터젯 노즐 운용변수에 따른 화강암 천공성능 및 형상 분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Hong, Eun-Soo;Jun, Hyung-Woo;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.589-604
    • /
    • 2021
  • Waterjets for rocks have various advantages of the non-contact and eco-friendly excavation using only water and abrasive. To overcome the problems (e.g., dust and noise occurrence) of the conventional drilling methods, waterjet excavation methods are broadly used. It is advantageous to operate a couple of nozzles in order to increase the waterjet excavation efficiency. When multiple nozzles are used, it is essential to analyze the excavation performance and shape according to the nozzle operation method. In this study, nozzle angle, horizontal distance between nozzles, and standoff distance were defined as nozzle operating parameters and the excavation performance and shape were analyzed. As a result of the experiment, when the nozzle angle and standoff distance are increased, the excavation depth is decreased and the effective depth tends to be increased. In addition, based on the experimental results, the excavation shape criteria required for nozzle insertion were proposed and optimal nozzle operating parameters were derived according to the criteria. This study result is expected to be used as useful basic research in the future development of multiple waterjet nozzles for rock drilling.

Investigation of the concentration characteristic of RCS during the boration process using a coupled model

  • Xiangyu Chi;Shengjie Li;Mingzhou Gu;Yaru Li;Xixi Zhu;Naihua Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2757-2772
    • /
    • 2023
  • The fluid retention effect of the Volume Control Tank (VCT) leads to a long time delay in Reactor Coolant System (RCS) concentration during the boration process. A coupled model combining a lumped-parameter sub-model and a computational fluid dynamics sub-model is currently used to investigate the concentration dynamic characteristic of RCS during the boration process. This model is validated by comparison with experimental data, and the predicted results show excellent agreement with experimental data. We provide detailed fields in VCT and concentration variations of RCS to study the interaction between mixing in VCT and the transient responses of RCS. Moreover, the impacts of the inlet flow rate, inlet nozzle diameter, original concentration, and replenishing temperature of VCT on the RCS concentration characteristic are studied. The inlet flow rate and nozzle diameter of VCT remarkably affect the RCS concentration characteristic. Too-large or too-small inlet flow rates and nozzle diameters will lead to unacceptable long delays. In this work, the optimal inlet flow rate and nozzle diameter of VCT are 5 m3/h and 58.8 mm, respectively. Besides, the impacts of the original concentration and replenishing temperature of VCT are negligible under normal operating conditions.

Development of Ejector System for Chemical Lasers Operating (I) - Design Parameter Study of Supersonic Ejector for Chemical Lasers Operating - (화학레이저 구동용 이젝터 시스템 개발 (I) - 화학레이저 구동용 초음속 이젝터 설계 변수 연구 -)

  • Kim, Se-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1673-1680
    • /
    • 2003
  • It is essential to operate chemical lasers with supersonic ejector system as the laser output power goes up. In this research, ejector design parameter study was carried out for optimal ejector design through understanding the ejector characteristics and design requirements for chemical lasers operating. Designed ejector was 3D annular type with 2$^{nd}$ -throat geometry and pressurized air was used for primary flow. Ejector design was carried out with two steps, quasi-1D gas dynamics was used for first design and commercial code was used to verify the first design. In this study, to get the effect of ejector geometry on its performance, three cases of primary nozzle area ratio and 2$^{nd}$ -throat cross sectional area and two cases of 2$^{nd}$ -throat L/D ratio experiments were carried out. Primary and secondary pressures were measured to get the mass flow rate ratio, minimum secondary pressure, ejector starting pressure and unstarting pressure at every case. In the result, better performance than design level was shown and optimal ejector design method for chemical lasers was obtained.

Freejet 타입 램제트 엔진 성능시험기 기본설계

  • Lee, Yang-Ji;Cha, Bong-Jun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.65-78
    • /
    • 2004
  • This research was conducted for an acquisition of the ramjet engine test facility design technique which are concerned about freejet type test facility. In this research, we concentrated on the design technique and the construction technique of the vitiation air heater(VAH), test section, diffuser and ejector. Based on the operating modes of the basic test facility, ten operating modes in coordinates "Altitude-Mach number" was regenerated from Mach 2, Altitude 0km to Mach 5, Altitude 15km. In this operating modes, we calculated a design parameter of the supersonic nozzle, VAH, diffuser and ejector and acquired a technique for the ramjet test facility operating and repairing.

  • PDF

A Study of the Second Stage Effect on a Partially Admitted Small Turbine (부분분사에서 작동하는 소형터빈에서 두 번째 단의 효과에 관한 연구)

  • Cho, Chong-Hyun;Cho, Bong-Soo;Choi, Sang-Kyu;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.898-906
    • /
    • 2008
  • A tested turbine consists of two stages, and an axial-type and a radial-type turbine are applied to the first and second stage, respectively. The mean diameter of the axial-type turbine rotor is 70 mm, and the outer diameter of the radial-type turbine is 68mm at the inlet. In this experiment, an axial-type turbine, two different radial-type turbines, and three different nozzle flow angles are applied to find the optimal design parameters. To compare the turbine performance, the net specific output torque is evaluated. The test results show that the nozzle flow angle on the first stage is a more important parameter than other design parameters for partially admitted small turbines to obtain high operating torque. For a 3.4% partial admission rate, the net specific output torque is increased by 13% with the addition of a radial-type rotor to the second stage when the turbine operates at $75^{\circ}$ nozzle flow angle.

Empirical Correlations for Breakup Length of Liquid Jet in Uniform Cross Flow-A Review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • The empirical correlations for the prediction of breakup length of liquid jet in uniform cross flow are reviewed and classified in this study. The breakup length of liquid jets in cross flow was normally discussed in terms of the distances from the nozzle exit to the column breakup location in the x and y directions, called as column fracture distance and column fracture height, respectively. The empirical correlations for the prediction of column fracture distance can be classified as constant form, momentum flux ratio form, Weber number form and other parameter form, respectively. In addition, the empirical correlations for the prediction of column fracture height can be grouped as momentum flux ratio form, Weber number form and other parameter form, respectively. It can be summarized that the breakup length of liquid jet in a cross flow is a basically function of the liquid to air momentum flux ratio. However, Weber number, liquid-to-air viscosity ratio and density ratio, Reynolds number or Ohnesorge number were incorporated in the empirical correlations depending on the investigators. It is clear that there exist the remarkable discrepancies of predicted values by the existing correlations even though many correlations have the same functional form. The possible reasons for discrepancies can be summarized as the different experimental conditions including jet operating condition and nozzle geometry, measurement and image processing techniques introduced in the experiment, difficulties in defining the breakup location etc. The evaluation of the existing empirical correlations for the prediction of breakup length of liquid jet in a uniform cross flow is required.

Simulation of Etching Process Using Statistical Method (통계적 기법을 이용한 에칭공정의 시뮬레이션)

  • Jeong, Heung-Cheol;Jung, Ji-Won;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1611-1616
    • /
    • 2004
  • The objective of this study is to simulate the etching characteristics under different process parameters for the optimization of etching process. The etching characteristics such as the etching factor were investigated under different operating conditions and compared with the spray characteristics. The spray characteristics were measured by using Phase Doppler Anemometer. The correlation between the etching characteristics and the spray characteristics was analyzed to simulate the etching characteristics under the actual parameters of the etching process. The parameters were distance of nozzle tip and pipe pitch. To improve the uniformity and value of etching factor in the etching process, the process parameters should be designed optimally. The distribution of spray was simulated by the Monte-Carlo Method and the process parameters were optimized by the design of experiments(DOE).

  • PDF

Analysis of Macroscopic Spray Characteristics of Diesel Injectors with Three Different Needle Driving Type in Common Rail Direct Injection System (3가지 니들구동방식별 CRDi 디젤엔진용 고압 인젝터의 거시적 분무특성 비교해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.351-358
    • /
    • 2006
  • The capability of high pressure injection with small fuel quantify at all engine operating conditions is one of the main feature in common rail fuel injection system, which is used in small and light-duty Diesel engine. The key parameter for the better atomized fuel sprays and multiple injections of this common rail fuel injection control, that can be freely selected irrespective of the engine speed and load is the mechanism controlling the needle energizing and movement in high pressure Diesel injector. In the electro-hydraulic injector, the injection nozzle is being opened and closed by movement of the injector's needle which is balanced by pressure between the nozzle seat and the needle control chamber. This study describes the macroscopic spray structure characteristics of the common rail Diesel injectors with different electric driving method i.e. the solenoid-driven and piezo-driven type. The macroscopic spray characteristics such as spray tip speed. spray tip penetration and spray cone angle were investigated by the high speed spray, which is measured by the back diffusion light illumination method with optical system for the high speed temporal photography in a constant volume chamber pressurized by nitrogen gas. As the results, the prototype piezo-driven injector system was designed and fabricated for the first time in domestic case and the effect of injector's needle response driven by different drive type was compared between the solenoid and piezo-driven injector It was found therefore. that the piezo-driven injector showed faster needle response and had better needle control capability by altering the electric input value than the solenoid-driven injector.

A Study on Pressure Control for Variable Thrust Solid Propulsion System Using Cold Gas Test Equipment (상온기체 모사장치를 이용한 가변추력 고체추진기관의 압력제어 연구)

  • Lee, Ho-Sung;Lee, Do-Yoon;Park, Jong-Seung;Kim, Joung-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.76-81
    • /
    • 2009
  • A nonlinear pressure controller to actively regulate the thrust of a solid propulsion system is presented. To compensate for the parametric uncertainties with respect to the chamber pressure induced by changing nozzle throat area, Lyapunov-based parameter adaptation method has been applied. In order to verify the effectiveness of the proposed control method, the experiments were carried out using the cold gas test equipment that can simulate the operating environment of variable thrust solid propulsion system. The experiment results show that the nonlinear pressure controller has better performance than conventional P and PI controller.

Analysis of a small steam injected gas turbine system with heat recovery (열회수를 고려한 소형 증기분사 가스터빈 시스템 해석)

  • Kim, Dong-Seop;Jo, Mun-Gi;Go, Sang-Geun;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.996-1008
    • /
    • 1997
  • This paper describes a methodology and results for the analysis of a small steam injected gas turbine cogeneration system. A performance analysis program for the gas turbine engine is utilized with modifications required for the model of steam injection and the heat recovery steam generator (HRSG). The object of simulation is a simple cycle gas turbine engine under development which adopts a centrifugal compressor. The analysis is based on the off-design operation of the gas turbine and the compressor performance map is utilized. Analyses are carried out with the injection ratio as the main parameter. The effect of steam injection on the power and efficiency of gas turbine and cogeneration capacity is investigated. Also presented is the variation in the main operating parameters inside the HRSG. Remarkable reduction in NOx generation by steam injection is confirmed. In addition, it is observed that for the 100% power operation the temperature of the cooled first nozzle blade decreases by 100.deg. C at full steam injection, which seems to have a favorable effect on the engine life time.