• Title/Summary/Keyword: Nozzle dam task

Search Result 4, Processing Time 0.02 seconds

Managerial Factors Influencing Dose Reduction of the Nozzle Dam Installation and Removal Tasks Inside a Steam Generator Water Chamber (증기발생기 수실 노즐댐 설치 및 제거작업의 피폭선량 저감에 영향을 주는 관리요인에 관한 연구)

  • Lee, Dhong Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.559-568
    • /
    • 2017
  • Objective: The aim of this study is to investigate the effective managerial factors influencing dose reduction of the nozzle dam installation and removal tasks ranking within top 3 in viewpoint of average collective dose of nuclear power plant maintenance job. Background: International Commission on Radiation Protection (ICRP) recommended to reduce unnecessary dose and to minimize the necessary dose on the participants of maintenance job in radiation fields. Method: Seven sessions of nozzle dam installation and removal task logs yielded a multiple regression model with collective dose as a dependent variable and work time, number of participants, space doses before and after shield as independent variables. From the sessions in which a significant reduction in collective dose occurred, the effective managerial factors were elicited. Results: Work time was the most important factor contributing to collective dose reduction of nozzle dam installation and removal task. Introduction of new technology in nozzle dam design or maintenance job is the most important factor for work time reduction. Conclusion: With extended task logs and big data processing technique, the more accurate prediction model illustrating the relationship between collective dose reduction and effective managerial factors would be developed. Application: The effective managerial factors will be useful to reduce collective dose of decommissioning tasks as well as regular preventive maintenance tasks for a nuclear power plant.

Local path-planning of a 8-dof redundant robot for the nozzle dam installation/detachment of the nuclear power plants

  • Park, Ki C.;Chang, Pyung H.;Kim, Seung H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.133-136
    • /
    • 1996
  • The nozzle dam task is essentially needed to maintain and repair nuclear power plants. For this task, an 8-dof redundant robot is studied with a local path-planning method[l] which is effective to find the optimal joint path in the constrained environment. In this paper, the method[l] is improved practically with the weight matrix and efficient algorithm to find working set. The effectiveness of the proposed method is demonstrated by simulation and animation.

  • PDF

Kinematic Control of Redundant Robots in the Constrained Environment and Its Applicaiton to a Nozzle Dam Installation/Detachment Task in Nuclear Power Plants (구속된 환경에서의 여유자유도 로봇의 기구학적 제어와 원자력 발전소 노즐댐 장 /탈착작업에의 적용)

  • Park, Ki-Cheol;Chang, Pyung-Hun;Kim, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3871-3882
    • /
    • 1996
  • In this paper, a closed-form formulation for inverse kinematics of robot manipulators with kinematic redundancy under the constrained environment has been derived using the Kuhn-Tucker condition, the extended Lagrange multiplier method and the working set method. The proposed algorithm satisfies the necessaryand sufficient conditions for optimization subject to equality and inequality constraints. In addition, computationally efficient kinematic control methods have been proposed using differential kinemetics and gradient projection mehtod. The effectiveness of the proposed methods has been demonstrated with a 4-dof planar robot, and then a 7-dof spatial robot as a practical application to the nozzle dam task in the Nuclear Power Plant.

Telerobot control based on 3-D graphics (3차원 그래픽을 이용한 원격로보트 제어)

  • 김창회;황석용;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1527-1530
    • /
    • 1996
  • Telerobot system is being developed for the application to nuclear power plants by Korea Atomic Energy Research Institute. Human-machine interaction and interface are very important elements of telerobotic systems. The main purpose of this study is developing a control system based on 3-D graphic techniques for the easy user interface and realistic visual I information supply. This system possesses the abilities for (1) virtual work, environment modelling and simulation, (2) kinematic animation include redundant behavior (3) interfacing with a real robot system, (4) transformation between real and virtual mode within the same graphics system. This system is especially focused on enhancing the overall efficiency and reliably of nozzle dam installation task inside water chamber of steam generator in nuclear power plant.

  • PDF