• Title/Summary/Keyword: Nozzle Transfer

Search Result 331, Processing Time 0.024 seconds

A Study on the Heat Transfer Characteristics on Flat Plate Surface by Two-dimensional Impinging Air Jet (평판전열면(平板傳熱面)에 충돌(衝突)하는 2차원충돌분류계(二次元衝突噴流系)의 열전달특성(熱傳達特性)에 관(關)한 연구(硏究))

  • Lee, Y.H.;Kim, S.P.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • The purpose of this study is to investigate the heat transfer characteristics and the flow structure in the case of rectangular air jet impinging vertically on the flat heating surface. The maximum value of Nusselt number at stagnation point is observed at H/B=10. It is found that this trend has been caused by the effect of stretching of large scale vortex in the stagnation region. For potential core region the Nusselt number distribution in the downstream of the stagnation point decreases gradually and begins to increase at about X/B=3. From the flow visualization it could be seen that small eddy produced from the nozzle edge grows in large scale and that large scale eddy disturbed the thermal boundary layer on the heating plate. The local average Nusselt number becomes maximum at X/B=0.5 regardless of H/B variation.

  • PDF

Flame Dynamic Response to Inlet Flow Perturbation in a Turbulent Premixed Combustor (난류 예혼합 연소기에서의 흡입 유동 섭동에 대한 화염의 동적 거동)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.48-53
    • /
    • 2009
  • This paper describes the forced flame response in a turbulent premixed gas turbine combustor. The fuel was premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. To impose the inlet flow velocity, a siren type modulation device was developed using an AC motor, rotating and static plates. Measurements were made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The test results showed that flame length as well as geometry was strongly dependent upon modulation frequency in addition to operating conditions such as inlet velocity. Convection delay time between the velocity perturbation and heat release fluctuations was calculated using phase information of the transfer function, which agreed well with the results of flame length measurements. Also, basic characteristics of the flame nonlinear response shown in the current test conditions were introduced.

  • PDF

Numerical Analysis of Fluid Flow in a Regenerative Cooling Passage (재생냉각 유로 내의 유동에 관한 수치해석)

  • 조원국
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2000
  • A computational analysis has been made on fluid flow in a regenerative cooling Passage for a reduced size liquid rocket engine to predict pressure drop and heat transfer rate in it. The contraction/expansion of the cross sectional area of the passage turn out to increases both the pressure loss and the heat transfer rate of the duct. The changes of the cross sectional area near the nozzle throat are effective to protect the throat which suffers from severe thermal load. Also given is the qualitative characteristics of the performance of the regenerative cooling system due to the variation of coolant flow rate.

  • PDF

Flow and Heat Transfer Characteristics of a Multi-Tube Inserted Impinging Jet (노즐출구에 삽입된 다중관에 의한 충돌제트의 유동 및 열전달 특성)

  • Hwang, Sang-Dong;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.135-145
    • /
    • 2004
  • An experimental study is conducted to investigate the flow and heat transfer characteristics of a multi-tube inserted impinging jet. Four different multi-tube devices are tested for various nozzle-to-plate distance. Flow visualization by smoke-wire method and velocity measurements using a hot-wire anemometer are applied to analyze the flow characteristics of the multi-tube insert impinging jet. The local heat transfer coefficients of the multi-tube inserted impinging jet on the impingement surface are measured and the results are compared to those of the conventional jet. In multi-tube inserted system the multi-tube length plays an important role in the flow and heat transfer characteristics of the jet flow. With multi-tube insert of I3d4 and I6d4 which has relatively longer tube length than the multi-tube-exit of I3d1 and I6d1, the flow maintains its increased velocity far downstream due to interaction between adjacent flows. For the small H/D of 4, the local heat transfer coefficients of multi-tube inserted impinging jet are much higher than those of the conventional jet because the flow has higher velocity and turbulent intensity by the use of the multi-tube device. At large gap distance of H/D=12, also higher heat transfer rates are obtained by installing multi-tube insert except multi-tube insert of I3d1.

Flow Characteristics of Acoustically Excited Axisymmetric Impinging Jet (음향여기된 축대칭 충돌제트의 유동 특성)

  • 조형희;이창호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.32-40
    • /
    • 1997
  • The velocity and turbulent intensity of the jet core are affected by the vortices around jet. By the control of vortex acoustically, we can expect the changes of the flow and heat transfer characteristics of free and impinging jets. On this paper, we studied the effects of vortex forcing. If vortex pairings are promoted by acoustic excitation, the turbulent intensity is increased and the high heat transfer coefficients are obtained at the small nozzle to plate distance. On the other hand, it has low turbulent intensity at the center of jet. However due to increase of potential core length, it is more effective at the large nozzle to plate distance. Therefore the excited frequency, especially its subharmonic frequency, has an important role to control the jet flows.

  • PDF

Effect of Hydraulic Pressure on Bubble Dissolution Rate of Ejector Type Microbubble Generator (수압이 자흡식 마이크로버블 발생장치의 산소 용해율에 미치는 영향)

  • Kim, Hyun-Sik;Lim, Ji-Young;Park, Soo-Young;Kim, Jin-Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.27-31
    • /
    • 2017
  • This study was performed to estimate bubble dissolution rate by change of hydraulic pressure according to increase of water depth. Experimental results showed that airflow rate was decreased by increase of hydraulic pressure. Because the force which acts on outlet of nozzle was increased by increase of hydraulic pressure. Mass-transfer coefficient decreased with decreasing airflow rate and increasing effective volume due to increase of hydraulic pressure as water depth increased. On the contrary, as the water depth increased, the bubble dissolution rate was increased because longer residence time of microbubble which was generated by ejector type microbubble generator. However it was thought that if water depth for capacity of ejector type microbubble generator is excessively increasing, bubble dissolution rate would be reduced due to low airflow rate and mass-transfer coefficient. Therefore, it is importance to consider the water depth when operating ejector type microbubble generator.

Effects of $CO_2$ and $H_2O$ Additions on Partially Premixed Counterflow Flame by Considering Nongray Gas Radiation (비회색 가스 복사를 고려한 층류대향류 부분예혼합 화염에서의 $CO_2$$H_2O$ 첨가에 따른 영향 연구)

  • Jo, Bum-Jin;Kim, Tae-Kuk
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.10-16
    • /
    • 2005
  • Detailed flame structures of the counterflow flames of $CH_4/Air$ formed with $CO_2$ and $H_2O$ addition are studied numerically. The detailed chemical reactions are modeled by using the OPPDIF and CHEMKIN-II code. Only the $CO_2$ and $H_2O$ are assumed to participate in radiative heat transfer while all other gases are assumed to be transparent. The discrete ordinates method(DOM) and the narrow band based WSGGM with a gray gas regrouping technique(WSGGM-RG) are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the counter flow flames. The results compared with the SNB model show that the WSGGM-RG is successful in modeling the counterflow flames with non-gray gas mixture. The numerical results show that the addition of $CO_2$ and $H_2O$ to the oxidant nozzle lowers the peak temperature and the NO concentration in flame.

  • PDF

Thermal and flow characteristics of confined multiple slot jet impingement with exhaust ports (배기구를 가진 국한된 다중 슬롯 충돌제트의 열유동 특성)

  • Kang, Soo-Jin;Cho, Woo-Jin;Lee, Jong-Hyeok;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.835-840
    • /
    • 2009
  • In this paper, confined multiple slot jet impingement with exhaust ports is investigated numerically. A flow cell, defined as volume sectioned by the impingement and confinement surfaces and the centerlines of adjacent nozzle and exhaust port, is chosen for computational domain. The effects of Reynolds number and geometrical parameters on the heat transfer performance and the flow characteristics are studied. For turbulence, the Abe-Kondoh-Nagano version of the low-Reynolds k-$\varepsilon$ model is employed. The results showed that the local Nusselt number distribution is shifted down and show poor heat transfer performance for small Reynolds number and small ratio of the lateral and axial length of flow cell. The rest of range, except the range of the shift phenomenon, can be classified into three groups by heat transfer characteristics.

  • PDF

Experiments on the Thermal Stratification in the Branch of NPP

  • Kim Sang Nyung;Hwang Seon Hong;Yoon Ki Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1206-1215
    • /
    • 2005
  • The thermal stratification phenomena, frequently occurring in the component of nuclear power plant system such as pressurizer surge line, steam generator inlet nozzle, safety injection system (SIS), and chemical and volume control system (CVCS), can cause through-wall cracks, thermal fatigue, unexpected piping displacement and dislocation, and pipe support damage. The phenomenon is one of the unaccounted load in the design stage. However, the load have been found to be serious as nuclear power plant operation experience accumulates. In particular, the thermal stratification by the turbulent penetration or valve leak in the SIS and SCS pipe line can lead these safety systems to failure by the thermal fatigue. Therefore in this study an 1/10 scaledowned experimental rig had been designed and installed. And a series of experimental works had been executed to measure the temperature distribution (thermal stratification) in these systems by the turbulent penetration, valve leak, and heat transfer through valve. The results provide very valuable informations such as turbulent penetration depth, the possibility of thermal stratification by the heat transfer through valve, etc. Also the results are expected to be useful to understand the thermal stratification in these systems, establish the thermal strati­fication criteria and validate the calculation results by CFD Codes such as Fluent, Phenix, CFX.

Effect of Cooling Water Temperature on Heat Transfer Characteristics of Water Impinging Jet (냉각수 온도에 따른 수분류 충돌제트의 열전달 특성 연구)

  • Lee, Jungho;Yu, Cheong-Hwan;Do, Kyu Hyung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.249-256
    • /
    • 2010
  • Water jet impingement cooling has been widely used in a various engineering applications; especially in cooling of hot steel plate of steelmaking processes and heat treatment in hot metals as an effective method of removing high heat flux. The effects of cooling water temperature on water jet impingement cooling are primarily investigated for hot steel plate cooling applications in this study. The local heat flux measurements are introduced by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are used to measure the heat flux distribution during water jet impingement cooling. The experiments are performed at fixed flow rate and fixed nozzle-to-target spacing. The results show that effects of cooling water temperature on the characteristics of jet impingement heat transfer are presented for five different water temperatures ranged from 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided with respect to different boiling regimes.