• Title/Summary/Keyword: Nozzle Throat

Search Result 208, Processing Time 0.021 seconds

Investigation of the essential parameters governing starting characteristic in the second throat exhaust diffuser for high altitude simulation (고도모사용 2 차목 초음속 디퓨져 시동특성에 영향을 미치는 파라미터에 관한 연구)

  • Park, Sung-Hyun;Park, Byung-Hoon;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2642-2647
    • /
    • 2008
  • Starting characteristics of the axi-symmetric supersonic exhaust diffuser(SED) with a second throat are numerically investigated. Main purpose of this study is to predict theoretical starting pressure of STED using 1-D normal shock theory and to present the range of optimum starting pressure through parametric study with essential design parameters of STED influencing on starting performance. Renolds-Average Navier-Stokes equations with a standard ${\kappa}-{\varepsilon}$ turbulence model incorporated with standard wall function are solved to simulate the diffusing evolutions of the nozzle plume. Minimum(optimum) starting pressure difference of $20{\sim}25%$ between 1-D theory and experimental evidences validated from previous results[5] is also applied to predict those in this system. The analysis results indicate that dominant parameters for diffuser starting in this system is diffuser expansion ratio($A_d/A_t$), which has optimum value 120 and second throat area ratio($A_d/A_{st}$), which has optimum range $3.3{\sim}3.5$.

  • PDF

Study of Ejector System for Pressure Recovery of Chemical Lasers (화학레이저 압력회복용 이젝터 시스템 연구)

  • 김세훈;김춘택;권세진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.49-53
    • /
    • 2003
  • In this study, the geometric design parameters of ejector system were investigated. The critical parameters were primary nozzle area ratio, 2nd-throat cross sectional area and 2nd-throat L/D ratio. At every geometry cases, primary pressure and secondary pressure were measured simultaneously according to secondary mass flow rate. From the results, the ejector starting pressure, unstarting pressure and minimum secondary flow pressure were found and we got the effect of geometric parameters to ejector performance and the way to optimal design of ejector system for chemical lasers operating. Also the experiments of changing secondary flow temperature were carried out.

  • PDF

Numerical Analysis of Fluid Flow in a Regenerative Cooling Passage (재생냉각 유로 내의 유동에 관한 수치해석)

  • 조원국
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2000
  • A computational analysis has been made on fluid flow in a regenerative cooling Passage for a reduced size liquid rocket engine to predict pressure drop and heat transfer rate in it. The contraction/expansion of the cross sectional area of the passage turn out to increases both the pressure loss and the heat transfer rate of the duct. The changes of the cross sectional area near the nozzle throat are effective to protect the throat which suffers from severe thermal load. Also given is the qualitative characteristics of the performance of the regenerative cooling system due to the variation of coolant flow rate.

  • PDF

Analytical Study of the Subsonic/Sonic Ejector Flows (아음속/음속 이젝터의 유동에 관한 해석적 연구)

  • 최보규;김희동;김덕줄
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.1-10
    • /
    • 2000
  • In order to predict the performance of subsonic/sonic ejector system and to provide fundamental data for a cost effective design, one dimensional gas dynamics theory was applied to the subsonic and sonic ejector systems with the second throat. In the current theoretical analyses, ejector throat area ratio, mass flow ratio and secondary stagnation pressure were derived as a function of the operating pressure ratio of the ejector, and the discharge coefficient of the primary nozzle and the loss coefficient of the diffuser were incorporated into the whole performance of the ejector system. The results of theoretical analysis can be applied to practical industrial use of subsonic and sonic gas ejector systems.

  • PDF

A Study on the Steady-State Characteristics of Symmetric Pintle Nozzle with Varying Position of Pintle and Change in Altitude (대칭형 핀틀 노즐의 핀틀 위치와 고도 변화에 대한 정상상태 특성 연구)

  • Jeong, Kiyeon;Kang, Dong-Gi;Jung, Eunhee;Lee, Daeyeon;Choi, JaeSung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.33-45
    • /
    • 2019
  • In this study, numerical simulations were performed to investigate the steady-state characteristics of a symmetric pintle nozzle by varying the position of the pintle and the altitude. The pintle nozzle shape was used in a linear pintle nozzle that had been analyzed prior to the study, and the boundary conditions of the chamber were considered to be according to the propellant burn-back characteristics. A software was used to perform a verification analysis of the square nozzle, pintle nozzle, and high-altitude conditions with an appropriate analytical technique. The pintle position had three different nozzle throat area conditions-: fully closed, half open, and fully open, and the altitude was set at 0, 5, and 20 km. The study compared the thrust, pintle drive load, and static stability at each condition.

Performance Evaluation of Micro-nozzle Using Cold Gas Propulsion System (냉가스 추진장치를 이용한 마이크로 노즐의 성능평가)

  • Jung, Sung-Chul;Kim, Youn-Ho;Oh, Hwa-Young;Myong, Rho-Shin;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.6
    • /
    • pp.42-49
    • /
    • 2007
  • In this study, we analyzed flow characteristics of micro-nozzles for basic research to develop micro propulsion system. Cold gas propulsion system was used, and micro-nozzles having nozzle throat diameters of 1.0, 0.5, 0.25 mm were fabricated with EDM method. Thrust was measured through the use of plate-spring and strain gage based thrust measurement system, and flow characteristics of micro-nozzles were analyzed under ambient condition and vacuum condition. We used argon and nitrogen gases as propellant, and compared experimental results with CFD analysis. From the result, we verified the flow losses of viscosity and back-pressure caused by minimization of nozzle.

Study of Micro Propulsion System Based on Thermal Transpiration (열적발산원리를 이용한 마이크로 추진장치에 대한 연구)

  • Jung, Sung-Chul;Shin, Kang-Chang;Kim, Youn-Ho;Kim, Hye-Hwan;Lee, Yong-Wu;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.25-29
    • /
    • 2007
  • Minimization of conventional propulsion device has been studied for altitude control of micro satellite. We studied micro nozzle performance and found higher significant loss for a micro nozzle with smaller nozzle throat diameter. To overcome this loss, we proposed thermal transpiration based micro propulsion system. This new system has no moving parts and can control flow by temperature gradient, and this can be an option for potential new micro propulsion system.

  • PDF

Analysis of the hot gas flow field in a interrupter of UHV GCB (초고압 GCB 소호부내의 열가스 유동해석)

  • Song, K.D.;Park, K.Y.;Lee, B.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.372-375
    • /
    • 1999
  • This paper presents an arc(hot-gas flow field) analysis method in GCB. This method includes the Lorentz's force due to magnetic field, turbulent viscous effect and radiation heat transfer which are indispensable to the analysis of hot-gas flow. To verify the applicability of the Proposed method, steady state hot-Eas flow analysis within a simplified interrupter has been carried out. Inlet boundary pressure values were assumed to be 9.0atm and 12.0atm. For each inlet boundary condition, three cases of hot-gas flow field analyses were performed according to the values of arc currents which were assumed to be D.C 0.6kA. 1.0kA and 2.0kA. The results revealed that the arc radius at nozzle throat has been concentrated by increasing the pressure of nozzle upstream and that the maximum temperature of arc core has been decreased along to nozzle exit and the high temperature lesion come to be wide in nozzle downstream. From these results, it is confirmed that the proposed method will be applicable to predict the large current interruption capability of GCB.

  • PDF

Thrust Vectoring Control by Injection of Secondary Jets Inside Supersonic Nozzle (초음속 노즐 내부 이차제트 분출을 통한 추력편향 제어에 관한 연구)

  • Yoon, Sang-Hoon;Kim, Kuk-Jin;Min, Seong-Kyu;Lee, Yeol;Chun, Dong-Yeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.349-352
    • /
    • 2008
  • Thrust vectoring control by injection of secondary jet inside a convergent-divergent supersonic nozzle was studied by both experimentally and computationally. For various stagnation pressure of the secondary jet injected at a specific location(12 mm-downstream of throat) in the divergent section of nozzle, the characteristics of thrust vectoring were observed. Present numerical results were compared with previous investigators' results and Schlieren flow visualizations for the identical boundary conditions, and it showed a qualitatively good agreement. It was also noticed that the characteristics of thrust vectoring is strongly related to the reflection structure of oblique shock inside nozzle, ie., the pressure ratio of the secondary jet, SPR.

  • PDF

Evaluation of Critical Pressure Ratios Sonic Nozzle at Low Reynolds Numbers (음속 노즐의 임계 압력비에 대한 저 레이놀즈수의 영향)

  • Choe, Yong-Mun;Park, Gyeong-Am;Cha, Ji-Seon;Choe, Hae-Man;Yun, Bok-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1535-1539
    • /
    • 2000
  • A sonic nozzle is used as a reference flow meter in the area of gas flow rate measurement. The critical pressure ratio of sonic nozzle is an important factor in maintaining its operating condition. ISO9300 suggested the critical pressure ratio of sonic nozzle as a function of area ratio. In this study, 13 sonic nozzles were made by the design of ISC9300 with different half diffuser angles of 2。 to 8。 and throat diameters of 0.28 to 4.48 mm. The test results of half diffuser angles below 8。 ar quite similar to those of ISO9300. On the other hand, the critical pressure ratio for the nozzle of 8。 decreases by 5.5% in comparison with ISO9300. However, ISO9300 does not predict the critical pressure ratio at lower Reynolds numbers than 10(sup)5. Therefore, it is found that it is a better way for the flow of low Reynolds number to express the critical pressure ratio of sonic nozzle as a function of Reynolds number than area ratios. A correlation equation of critical pressure is introduced with uncertainty $\pm$3.2 % at 95% confidence level.