• Title/Summary/Keyword: Nozzle Spacing

Search Result 45, Processing Time 0.028 seconds

Analysis of Electric Field Distribution of PVDF Electrospinning According to Electrospinning Conditions (전기방사 조건에 따른 PVDF 방사의 전기장 분포 해석)

  • Yonjo Jung;Minsang Lee;Honggun Kim
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • In this study, electric field analysis was conducted for each process as a preliminary step in the design of the electrospinning device to apply the electrospinning PVDF nanofibers to increase the filtering effect of insect screens. In the electrospinning analysis using a single nozzle, it was confirmed that there was a decrease in the electrostatic field strength as the tip's size decreased, an increase in the voltage, and no effect depending on the TCD distance. In addition, it was confirmed that the closer the distance between tips, the more electric field interference occurs, and this was found to have a more significant effect on the tip located in the center with tips on both sides. Therefore, based on these analytical results, it is believed that an increase in production speed can be expected by establishing an efficient process line by confirming the radiating area of the collector and designing the spacing between multi-nozzles through actual experiments.

  • PDF

Microstrucual Characterization of Vacuum Gas Gas Atomized AZ31+1%MM Alloy Powders (진공가스분무한 AZ31+1%MM 합금 분말의 미세조직 특성)

  • 김연옥
    • Journal of Powder Materials
    • /
    • v.6 no.3
    • /
    • pp.231-237
    • /
    • 1999
  • In this study, the characteristics of gas atomized Mg-3wt%Al-1wt%Zn-1wt%MM alloy powders under vacuum condition were investigated. In spite of the low fluidity and easy oxidation of the molten magnesium, the spherical powders could be successfully produced by using a modified three pieces nozzle attached to the gas atomization unit. It was found that most of the solidified powders less than 50$\mu$m in diameter were single crystal and the solidified structure showed a typical dendritic morphology due to supercooling prior to nucleation. The secondary dendrite arm spacing decreased as the size of powders decreased. The Mg-Al-Ce intermetallic compounds with chemically stable phase were found in the interdendritic regions of $\alpha$-Mg. It is considered that formation of the chemically stable phase may possibly affect to improve the corrosion resistance. Therefore, it is expected that the materials formed of these Mg-Al-Zn-MM alloy powders shows better mechanical properties and corrosion resistance due to the structural refinement.

  • PDF

Preparation of Partial Mesophase Pitch-based Carbon Fiber from FCC-DO

  • Park, Sang-Hee;Yang, Kap-Seung;Soh, Soon-Young
    • Carbon letters
    • /
    • v.2 no.2
    • /
    • pp.99-104
    • /
    • 2001
  • Partial mesophase (PM) pitch precursor was prepared from fluidized catalytic cracking-decant oils (FCC-DO) by chemical reaction in the presence of $Br_2$. The PM pitch heated-treatment at $420^{\circ}C$ for 9 h exhibited the softening point of $297^{\circ}C$ with 23% yield, and 55% anisotropic content. The PM pitch precursor was melt-spun through circular nozzle by pressurized $N_2$, stabilized at $310^{\circ}C$, carbonized at $700^{\circ}C$, $1000^{\circ}C$, and $1200^{\circ}C$. The enough stabilization introduced 16.4% of the oxygen approximately. The stacking height ($L_{c002}$) and interlayer spacing ($d_{002}$) of the as-spun fibers were 4.58 nm and $3.45{\AA}$ and the value became minimum and maximum at $700^{\circ}C$ respectively in the carbonization procedure. The tensile strength increased with an increase in the heat treatment temperature exhibiting highest value of 750 MPa at $1200^{\circ}C$ carbonization.

  • PDF

Numerical Study on Heat Transfer Characteristics in Impinging Air Jet System (충돌분류시스템의 열전달 특성에 관한 수치적 연구)

  • Kum, Sung-Min;Kim, Dong-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.55-61
    • /
    • 2003
  • Heat transfer characteristics for an air jet vertically impinging on a flat plate with a set of hybrid rods was investigated numerically using the RNG k-$\varepsilon$turbulent model. A commercial finite-volume code FLUENT is used. The rods had cross sections of half circular and rectangular shapes. The heating surface was heated with a constant heat flux value of $1020W/m^2$. Parameters investigated were the jet Reynolds number, nozzle -to-plate spacing, the rod pitch and rod-to-plate clearance. The local and average Nusselt number were found to be dependent on the rod pitch and the clearance because installing rods disturbed the flow. Higher convective heat transfer rate occurred in the whole plate as well as in the wall jet region.

An experimental study of the unsteady flow in a confined slot jet by the change of nozzle shape (노즐형상 변화에 따른 국한 슬롯형 제트의 비정상 거동에 대한 실험적 연구)

  • Min, Young-Uk;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.55-58
    • /
    • 2006
  • The flow characteristics in a confined slot jet impinging on a flat plate were investigated by using cinematic Particle Image Velocimetry technique. The three different kinds of confined slot were applied to the jet with a view to evaluating the shape effect and the jet Reynolds number was varied from 250 to 1000 for a fixed jet-to-plate spacing of H/W=5. It was found that the vortex structures in the shear layer are developed with increase of Reynolds number and that the jet becomes unsteady by the interaction of vortex pairs between 500 and 750 of Reynolds number. Finally, the slot shape was proved to be related with the generation timing of vortex pair and the temporal vortex structure.

  • PDF

Heat Transfer Characteristics in Impinging Air Jet with Hybrid Rod (하이브리드 로드를 갖는 충돌공기제트의 열전달특성에 관한 연구)

  • 표창기;박상록;김동춘;금성민;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.277-283
    • /
    • 2000
  • The heat transfer characteristics for air jet vertically impinging on a flat plate which had a set of hybrid rod were investigated experimentally. The rod had a cross section made with a half of circular cross section and that of rectangular and was installed in front of the plate. The heating surface was given constant heat flux value of 1020 W/$m^2^{\circ]C$ and the problem parameters investigated were jet Reynolds number, nozzle-to-plate spacing and the rod size. The local and local average Nusselt number characteristics were found to be dependent on the rod size because the flow was disturbed by installing the rod. Higher convective heat transfer rate occurred in the whole plate as well as in the stagnation region.

  • PDF

Effect of Water Temperature on Heat Transfer Characteristic of Spray Cooling on Hot Steel Plate (냉각수온 효과에 따른 고온 강판의 스프레이 냉각 열전달 특성 연구)

  • Lee, Jung-Ho;Yu, Cheong-Hwan;Park, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.503-511
    • /
    • 2011
  • Water spray cooling is a significant technology for cooling of materials from high-temperature up to $900^{\circ}C$. The effects of cooling water temperature on spray cooling are mainly provided for hot steel plate cooling applications in this study. The heat flux measurements are introduced by a novel experimental technique that has a function of heat flux gauge in which test block assemblies are used to measure the heat flux distribution on the surface. The spray is produced by a fullcone nozzle and experiments are performed at fixed water impact density of G and fixed nozzle-totarget spacing. The results show that effects of water temperature on forced boiling heat transfer characteristics are presented for five different water temperatures between 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual spray cooling of hot steel plate cooling applications.

The Comparison of Experimental Results of Liquid Ejector Performance to Predictions by the Computer Aided Design Program (液休용 이젝터 性能에 관한 CAD와 實驗結果와의 比較)

  • 김경근;김명환;홍영표;고상철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.520-527
    • /
    • 1988
  • Liquid ejectors are widely used as marine pumps, inducer stage for the boiler feed water pump, boiler recirculating pump, cooling water recirculating pump in boiling water type nuclear reactor and a deep well pump, because of their high working confidence and simplicity. Furthermore, it requires only a modest net positive suction head for cavitation-free operation and it can be installed in remote location from mechanical power source. It is not easy to presume the friction losses, because it is complicately affected by area ratio, flowrate ratio, nozzle spacing, throat length, shape of liquid ejector and so on. Therefore, the optimization of liquid ejector design is still dependent, to a large extent, on the experimental results and empirical procedures. On the design of the liquid ejector, the area ratio and the nondimensional throat length are the most important design factors among the mentioned above. In this experiment, the effects of the area ratio and the nondimensional throat length to ejector efficiency are carried out systematically by the combination of 4 kinds of motive nozzle and 2 kinds of throat length. In this paper, the present experimental results are compared with the calculated ones by the previous computer aided design program based on one dimensional flow equation. And also, an empirical equation for the working limit of liquid ejector is reported.

Heat Transfer Characteristics of Water Jet Impinging on Oblique Surface (경사면(傾斜面)에 충돌(衝突) 하는 수분류(水噴流)의 열전달(熱傳達) 특성(特性)에 관(關)한 연구(硏究))

  • Choi, Guk-Gwang;Na, Gi-Dae;Kim, Yeun-Young;Jeon, Sung-Taek;Lee, Jong-Su
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 1993
  • The purpose of this research is to investigate the characteristics of heat transfer in the downward axisymmetric free water jet system impinged on a flat oblique plate which has the uniform heat flux. Experimental conditions considered were Reynolds number, distance between nozzle and Bat plate, inclination angle of heater surface and nozzle exit velocity. Local Nusselt number was subjected to the influence of Re number, Pr number, oblique angle of heating surface and local position of flat plate. In the wall region of downward surface, The secondary peak point of heat transfer appeared at the local point of X/D=-8 from the stagnation point. The stagnation heat transfer rate of this experimental study augments 2.4 times than that of laminar theorical solution. The stagnation nusselt number is function of Reynolds number, nozzle-plate spacing Prandtl number and oblique angle of impinging plate.

  • PDF

Heat transfer characteristics of multiple slot jets at the surface of protruding heated blocks (돌출 발열블록 표면에서의 배열 충돌제트에 의한 열전달 특성)

  • Chung, In-Kee;Park, Si-Woo;Hong, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.274-279
    • /
    • 2001
  • An experimental investigation of heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impinging multiple slot jets has been performed. The effects of jet-to-jet distances(S=16B, 24B), dimensionless nozzle-to-block distances(H/B=2, 6) and jet Reynolds numbers(Re=2000, 3900, 5800, 7800) on the local and average heat transfer coefficients have been examined with five isothermally heated blocks at streamwise block spacing(p/w=1). To clarify local heat transfer characteristics, naphthalene sublimation technique was used. From the results, it was found that the local and average heat transfer of heated blocks increases with decreasing jet-to-jet distance and increasing jet Reynolds number. Measurements of local heat transfer coefficients have given an indication of the nature of the interaction between jets and of the uniformity of heat transfer obtainable with various arrangements. In the case of S/B=16, H/B=6 and Re=7800, maximum average Nusselt number of overall blocks was obtained.

  • PDF