• 제목/요약/키워드: Nozzle Spacing

검색결과 45건 처리시간 0.013초

평판에 충돌하는 초음속 Twin 제트에 관한 연구 (A Study of Supersonic Twin Jet Impinging on a Plate)

  • 박순용;윤상호;백승철;권순범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.508-513
    • /
    • 2003
  • Experiments are performed to investigate the detailed structure of underexpanded twin jet impinging on a perpendicular flat plate. The major parameters, such as nozzle operating pressure and nozzle spacing, are varied to create different jet flow fields resulted from the complicated interactions of the twin jets. From the surface pressure measurements and shadowgraphs taken by schlieren optical system, the jet structure is strongly dependent on the nozzle operation pressure and the spacing. The results obtained show that the closer nozzle spacing may induce to decrease the diameter of the Mach disk within the first shock cell in the underexpanded twin jet. With the increasing nozzle operating pressure and decreasing the nozzle spacing, a new shock wave appears at the entrainment region between the two jets, due to the enhancement of mixing effect of the both jets. The closer nozzle spacing makes the overall impinging pressure level higher, while severe pressure oscillation along the axis of symmetry. Furthermore it is recommended the wider spacing to obtain higher thrust under the present experimental conditions.

  • PDF

1열 원형 서브머지드 충돌수분류군에 의한 열전달의 실험적 연구 (Impingement Heat Transfer Within a Row of Submerged Circular Water Jets)

  • 엄기찬
    • 설비공학논문집
    • /
    • 제22권8호
    • /
    • pp.538-544
    • /
    • 2010
  • An experimental investigation is presented to study the effect nozzle spacing, jet to plate spacing and Reynolds number on the local heat transfer to normally upward impinging submerged circular water jets on a flat heated surface. Nozzle arrays are a single jet(nozzle dia. = 8 mm), a row of 3 jets(nozzle dia. = 4.6 mm, nozzle spacing = 37.5 mm) and a row of 5 jets(nozzle dia. = 3.6 mm, nozzle spacing = 25 mm), and jet to plate spacing ranging from 16∼80 mm(H/D = 2∼10) is tested. Reynolds number based on single jet exit condition is varied 30000∼70000($V_o$ = 3∼7 m/s). Except for the condition of H/D = 10, the average Nusselt number of multi-jet is higher than that of single jet. For H/D = 2, average Nusselt number is increased by 50.3∼82.5% for a row of 3 jets and by 52.9∼65.2% on a row of 5 jets when compared to the average Nusselt number on the single jet.

고출력 LED에 적용한 분사냉각모듈의 열성능에 관한 연구 (A Study on Thermal Performance of an Impinging Cooling Module for High Power LEDs)

  • 이동명;박상희;김동주;김경진
    • 반도체디스플레이기술학회지
    • /
    • 제11권1호
    • /
    • pp.13-19
    • /
    • 2012
  • Thermal performance of an impinging cooling module for 150 W class high power LEDs have been investigated numerically and experimentally. Parametric studies were performed to compare the effect of several design parameters such as nozzle number, nozzle spacing, coolant flow rate, and impinging distance. The experiments were also carried out in order to validate the numerical results and the comparison between the experimental and numerical results showed good agreement. It is found that the overall thermal resistance of impinging cooling module strongly depends on the nozzle number, nozzle spacing, flow rate, and impinging distance. This results showed the optimized operating condition when number of nozzles is 25, nozzles spacing is 4mm, flow rate is 2.70 lpm, distance between nozzles and impinging surface is 2 mm.

Boom-Type Nozzle System의 분두배치(噴頭配置)에 관(關)한 연구(硏究) (Study on the Nozzle Spacing in the Boom-Type Nozzle System)

  • 서정덕;이상우
    • 농업과학연구
    • /
    • 제8권2호
    • /
    • pp.212-223
    • /
    • 1981
  • 우리나라에서 생산(生産)되고 있는 3종류(種類) Nozzle인 Disk형(型), Cap형(型), 그리고 Bolt형(型)을 Boom type nozzle system에 이용(利用)하는 경우에 가장 양호(良好)한 살포량(撒布量) 분포(分布)로 살포(撒布)할수 있는 적합(適合)한 분두간격(噴頭間隔)을 구연하기 위(爲)하여 분무(噴霧)높이 30cm, 40cm, 50cm와 분무압력(噴霧壓力) $2kg/cm^2$, $3kg/cm^2$, $4kg/cm^2$, $5kg/cm^2$, $6kg/cm^2$, $7kg/cm^2$, $8kg/cm^2$로 변화(變化)하면서 바람이 없는 실내실험(室內實驗)을 하였으며 이 분석결과(分析結果)를 기초로 하여 Boom상(上)의 적합(適合)한 분두간격(噴頭間隔)을 computer로 분석(分析)한 결과(結果)는 다음과 같다. 1. 분무압력(噴霧壓力)에 의(依)한 살포량(撒布量) 분포(分布)의 균등계수(均等係數)는 분무압력(噴霧壓力)이 $5{\sim}6kg/cm^2$일 때 Nozzle A에서 80%, Noxxle C에서 83%로 컸으며 분무압력(噴霧壓力)이 $7kg/cm^2$일 때 Nozzle B에서 80%로 커TEk. 2. 분무(噴霧)높이에 의(依)한 살포량(撒布量) 분포(分布)의 균등계수(均等係數)는 Nozzle A에 있어서 40cm일 때 86%, 그리고 Nozzle A에 있어서 40츠일 때 86%, 그리고 Nozzle B와 C에 있어서는 50cm에서 80% 및 83%로 컸었다. 3. Boom상(上)의 Nozzle간격(間隔)은 작을수록 반포량(搬布量) 분포(分布)의 균등성(均等性)은 양호(良好)하였으나 작업성능(作業性能) 및 가격(價格)을 감안하여 살포건(撒布巾)의 반경(半徑)이 바람직하다고 사료(思料)된다. 4. 본(本) 실험(實驗)의 Nozzle들의 균등계수(均等係數)가 모두 90%이하(以下)로서 Boom type Nozzle로 사용시(使用時)에 개선(改善)이 요구(要求)된다.

  • PDF

보텍스튜브를 이용한 충돌냉각의 실험적 연구 (An Experimental Investigation of Jet Impingement Cooling Using the Vortex Tube)

  • 신운철;김창수;배신철
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.8-15
    • /
    • 2007
  • The jet impingement cooling characteristics are investigated experimentally. The study is motivated by the potential application of local hot spot cooling by means of the vortex tube. The purposes of this research are to examine the effect of the nozzle-block spacing and flow rate. The results of jet through vortex tube is compared with ones of circular Jet. Flow visualization by the smoke-wire technique is also performed to investigate the flow structure. As the nozzle-block spacing is increased and flow rate decreased, the cooling effect of the Jet through the vortex tube decreases mere remarkably than that of the circular jet. So the cooling effect for the jet through the vortex tube is higher than that for the circular jet at $H/D{\leq}3$, $Q{\geq}10m^3/h$.

제한벽이 있는 공기제트에 의한 돌출 발열체의 냉각 특성에 대한 수치 해석 연구 (Numerical Study on the Cooling Characteristics of Pedestal Heat Source with an Confined Air Jet)

  • 최인수
    • 한국산업융합학회 논문집
    • /
    • 제12권1호
    • /
    • pp.11-18
    • /
    • 2009
  • The air flow and heat transfer characteristics of an air jet impinging on a pedestal heat source has been investigated numerically to examine the effects of geometric parameters such as nozzle-to-pedestal spacing, nozzle diameter and pedestal size. Also, the parameters of Reynolds number, air jet power, supplied heat and thermal conductivity of pedestal have been studied to reveal how these affect the average Nusselt number. Hence, a two-dimensional turbulent model has been developed and adopted to simulate the fluid flow and heat transfer phenomena numerically. The results obtained from the model show that the nozzle-to-pedestal spacing, relative size of nozzle to pedestal and Reynolds number of air jet have a significant influence on the cooling characteristics of heated pedestal. Furthermore, some useful guidelines could be given to the application of cooling the heated pedestal.

  • PDF

1열 원형 충돌수분류군에 의한 열전달의 실험적 연구 (제2보, 노즐-전열면간 거리의 영향) (Impingement heat transfer within 1 row of circular water jets: Part 2-Effects of nozzle to heated surface distance)

  • 엄기찬;이종수;김상필
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.59-66
    • /
    • 2000
  • In a previous paper, we have examined the effects of nozzle configuration and jet to jet spacing on the heat transfer of 1 row of circular water jets. In this paper, experiments have been conducted to obtain the effects of nozzle to target plate distances on the heat transfer of 1 row of 3 jets and 1 row of 5 jets. The nozzle configurations are Cone type, Reverse cone type and Vertical circular type. Nozzle to target plate distance H was varied from 16 mm(H/D=2) to 80mm(H/D=10). For fixed value of mass flow rate and nozzle to target plate distance, larger values of average Nusselt number were obtained for the smaller jet to jet spacing. For the array of water jets, the average heat transfer was decreased slightly with increasing nozzle to target plate distance at low jet velocity of $\textrm{V}_{o}$=3 m/s. However, except for $\textrm{V}_{o}$=8 m/s of 1 row of 5 jets, it was increased with increasing nozzle to target plate distance at high jet velocity of $\textrm{V}_{o}$$\geq$6m/s. We proposed to apply the nozzle configuration of maximum average heat transfer to each nozzle to target plate distance for 1 row of 3 jets, and, it was Reverse cone type nozzle for 1 row of 5 jets(Reynolds number$\geq$36000).

  • PDF

1열 원형 충돌수분류군에 의한 열전달의 실험적 연구 (제1보, 노즐형상의 영향) (Impingement heat transfer within 1 row of circular water jets : Part 1-Effects of nozzle configuration)

  • 엄기찬;김상필
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.50-58
    • /
    • 2000
  • Experiments were carried out to obtain the effects of nozzle configuration and jet to jet spacing on the heat transfer characteristics of single line of circular water jets impinging on a constant heat flux plane surface. The nozzle configurations are Cone type, Reverse cone type and Vertical circular type, and the nozzle arrays are single jet(nozzle dia. 8 mm), 1 row of 3 jets and 1 row of 5 jets. Jet velocities ranging from 3m/s to 8m/s were investigated for the nozzle to target plate spacing of 80 mm. For the Cone and Reverse cone type nozzle arrays, the average Nusselt number of 1 row of 5 jets was larger than that of 1 row of 3 jets at Re$_{D}$<45000, but that of 1 row of 3 jets was larger than that of 1 row of 5 jets at $Reo\le45000$. For the Vertical circular type nozzle, however, the average Nusselt number of 1 row of 3 jets was larger than that of 1 row of 5 jets at all jet velocities. In the condition of fixed mass flow rates, the maximum heat transfer augmentation was obtained for 1 row of 5 jets and was over 2 times larger than that of the single jet for all nozzle configurations. The nozzle configurations that produce the maximum average Nusselt number are as follows: For 1 row of 3 jets, the Vertical circular type at $Reo\le45000$ and the Reverse cone type at $Reo\le45000$. But, they are the Reverse cone type at Re$_{D}$<55000 and the Vertical circular type at$Reo\le55000$ for 1 row of 5 jets.

  • PDF

Effect of Axial Spacing between the Components on the Performance of a Counter Rotating Turbine

  • Subbarao, Rayapati;Govardhan, Mukka
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권4호
    • /
    • pp.170-176
    • /
    • 2013
  • Counter Rotating Turbine (CRT) is an axial turbine with a nozzle followed by a rotor and another rotor that rotates in the opposite direction of the first one. Axial spacing between blade rows plays major role in its performance. Present work involves computationally studying the performance and flow field of CRT with axial spacing of 10, 30 and 70% for different mass flow rates. The turbine components are modeled for all the three spacing. Velocity, pressure, entropy and Mach number distributions across turbine stage are analyzed. Effect of spacing on losses and performance in case of stage, Rotor1 and Rotor2 are elaborated. Results confirm that an optimum axial spacing between turbine components can be obtained for the improved performance of CRT.

단일수분류 및 수분류군에 의한 열전달(2)-1열 수분류군- (Heat Transfer from Single and Arrays of Impinging Water Jets(II)-1 Row of Impinging Water Jets-)

  • 엄기찬;이종수;금성민
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1115-1125
    • /
    • 1997
  • Experiments have been conducted to obtain local and average heat transfer coefficients associated with impingement of a row of circular, free surface-water jets on a constant heat flux surface. Nozzle arrays are a row of 3 jets (nozzle dia.=4.6 mm) and a row of 5 jets (nozzle dia.=3.6 mm), and the nozzle configuration is Reverse cone type revealed good performance in heat transfer. Nozzle-to-plate spacings ranging from 16 mm to 80 mm were investigated for two jet center to center spacings 25 mm and 37.5 mm in the jet velocity of 3 m/s (R $e_{D}$=27000) to 8 m/s (R $e_{D}$=70000). For a row of 3 jets and a row of 5 jets, the stagnation heat transfer of the central jet is lower than that of adjacent jets. In the wall jet region between jets, for small nozzle-to-plate spacing and large jet velocity, the local maximum in the Nusselt number was observed, however, for small jet velocity or large nozzle-to-plate spacing, the local maximum was not observed. Except for the condition of $V_{O}$=8 m/s and H/D=10, the average Nusselt number reveals the following ranking: a row of 5 jets, a row of 3 jets, single jet. For a row of 3 jet, the maximum average Nusselt number occurs at H/D=8 ~ 10, and for a row of 5 jets, it occurs at H/D=2 ~ 4. Compared with the single jet, enhancement of average heat transfer for a row of 3 jets is approximately 1.52 ~ 2.28 times, and 1.69 ~ 3.75 times for a row of 5 jets.ets.s.