• Title/Summary/Keyword: Nozzle Space

Search Result 274, Processing Time 0.021 seconds

Performance test of micronozzle (마이크로 노즐 성능평가)

  • Moon, Seong-Hwan;Oh, Hwa-Young;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.72-78
    • /
    • 2005
  • We conducted the performance test of micronozzle having nozzle throat diameter of 1.0, 0.5, 0.25 mm in an ambient pressure. We used N2 gas as a cold gas propellant. We varied chamber pressure from 2 to 20 bar and measured the thrust and mass flow rate. Through the test, we concluded that viscous losses were increased with decreasing chamber pressure. We found that micronozzle performance was higher than orifice performance through thrust comparison.

Effect of the Stagnation Temperature on the Normal Shock Wave

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • When the stagnation temperature increases, the specific heat does not remain constant and start to vary with this temperature. The gas is perfect, it's state equation remains always valid, except, it was called by gas calorically imperfect or gas at high temperatures. The purpose of this work is to develop a mathematical model for a normal shock wave normal at high temperature when the stagnation temperature is taken into account, less than the dissociation of the molecules as a generalisation model of perfect for constant heat specific. A study on the error given by the perfect gas model compared to our model is presented in order to find a limit of application of the perfect gas model. The application is for air.

Computation of Sound Radiation in an AxisymmetricSupersonic Jet

  • Kim, Yong-Seok;Lee, Duck-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.18-27
    • /
    • 2004
  • An axisymmetric supersonic jet is simulated at a Mach number 2.1 and a Reynolds numberof 70000 to identify the mechanism of Mach wave generation and radiation from the jet. In orderto provide the near-field radiated sound directly and resolve the large-scale vortices highly.high-resolution essentially non-oscillatory(ENO) scheme, which is one of the ComputationalAeroAcoustics(CAA) techniques, is newly employed. Perfectly expanded supersonic jet is selectedas a target to see pure shear layer growth and Mach wave radiation without effect of change injet cross section due to expansion or shock wave generated at nozzle exit. The sound field ishighly directional and dominated by Mach waves generated near the end of potential core. Thenear field sound pressure levels as well as the aerodynamic properties of the jet, such asmean-flow parameters are in fare agreement with experimental data.

Linear Stability of Plane Wall Jet (2차원 벽면제트의 선형안정성해석)

  • Cha, Jeong-Hun;Park, Seung-O;Kim, Mun-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Linear stability analysis of 2-dimensional wall jet is conducted by using parabolized stability equation (PSE). Wall jet is found to be modelled well by boundary layer approximation except for the neighborhood of the nozzle exit, and the introduction of local similarity variable makes the streamwise basic flow Reynolds number independent. Stability characteristics of the wall jet obtained

The Affects of Molecular Properties of Motive Gas on Supersonic Ejection

  • Jin, Jung-Kun;Kwon, Se-Jin;Kim, Se-Hoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.98-106
    • /
    • 2008
  • The motive gas of a supersonic ejector is supplied from different sources depending on the application. The performance of an ejector that is represented by the secondary flow pressure, starting and unstarting pressures heavily depends on the molecular properties of the motive gas. The effects of specific heat ratio of the motive gas were investigated experimentally for an axi-symmetric annular injection type supersonic ejector. Both the starting pressure and unstarting pressure, however, decreased with the increase of the specific heat ratio of the motive gas. It was discovered that the secondary flow pressure increased as the specific heat ratio of the motive gas decreased even if the stagnation pressure of the motive flow was invariant. However, when the motive gas flow nozzle area ratio is large enough for the motive gas to be condensed, different tendency was observed.

Overview of Flow Diagnosis in a Shock Tunnel

  • Kim, Ikhyun;Lee, Sungmin;Park, Gisu;Lee, Jong Kook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.425-435
    • /
    • 2017
  • In this work, an overview of flow diagnosis in a shock tunnel is made by means of using established techniques that are easy to setup, economical to arrange, and simple to measure. One flow condition was considered having Mach number of 6 at the nozzle-exit, regarded as freestream. Measured aerothermodynamic data such as shock wave speed, wall static and total pressures, surface heat flux, and shock stand-off distance ahead of test model showed good agreement with calculation. This study shows an overall procedure of flow diagnosis in a shock tunnel in a single manuscript. Outcomes are thought to be useful in the field of education and also in a preliminary stage of high-speed vehicle design and tests, that need to be performed within a short time with decent accuracy.

Real -time Observation on Airborne Particles with Visual Impactor (입자의 실시간 관측이 가능한 임팩터의 설계 및 성능해석)

  • 육세진;안강호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.67-76
    • /
    • 2003
  • Recently consideration of health and interest on bio aerosols have been growing steadily. In this study, inertial impactor, which can be used to collect airborne particles and bio aerosols, was newly devised for real-time observation on the particles collected on impaction plate. and named Visual Impactor. Flow field and particle trajectory in the space between nozzle and impaction plate was analyzed numerically, and the collection effciencies were calculated. Calibration and performance evaluation of the Visual Impactor was conducted with polydisperse aerosols generated from 0.1% sodium chloride solution. Cut-off diameter from numerical simulation was in good agreement with that from experimental results. Because of particle bounce and particle deposition on nozzle tip due to short jet-to-plate distance, the collection efficiencies from numerical and experimental analyses were different slightly. Visual Impactor was used to collect airborne particles, and the features of collected particles could be seen in real-time. Airborne particles in different weather conditions (fine, cloudy, and rainy) were sampled and compared one another The features of collected airborne particles were dependent strongly upon relative humidity. In addition, with hours elapsing, shapes and colors of collected particles were changed by evaporation and surface tension, etc.

Study of Turbine Module Design for Die Casting Mold Release Injection Robot System (다이케스팅 이형재 분사 로봇시스템의 터빈 모듈 설계에 관한 연구)

  • Choi, Hyun-Jin;Son, Young-Bum;Park, Chul-Woo;Lee, Seung-Yong;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.1-7
    • /
    • 2015
  • Cleaning by injecting dry ice and water is a generally adopted trend these days to clean molds (injection, diecasting foundry, press, rubber mold, etc). This cleaning method is performed manually, or by installing multiple high pressure spray nozzles. We have manufactured a turbine cleaning module device that is able to clean diecasting modules at any position and angle in the space by mounting an articulated robot instead of the existing pipe type injection nozzle, to minimize lead time and enhance working yield of the cleaning process. In this paper, we analyzed process factors that are required to design the turbine module by reviewing number of revolution, and results according to different blade angles and thicknesses of the mold release injection turbine module, using computational fiuid dynamics (CFD).

Exhaust Plasma Characteristics of Direct-Current Arcjet Thrusters

  • Tahara, Hirokazu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.327-334
    • /
    • 2004
  • Spectroscopic and electrostatic probe measurements were made to examine plasma characteristics with or without a metal plate for a 10-㎾-class direct-current arcjet Heat fluxes into the plate from the plasma were also evaluated with a Nickel slug and thermocouple arrangement. Ammonia and mixtures of nitrogen and hydrogen were used. The NH$_3$ and $N_2$+3H$_2$ plasmas in the nozzle and in the downstream plume without a plate were in thermodynamical nonequilibrium states. As a result, the H-atom electronic excitation temperature and the $N_2$ molecule-rotational excitation temperature intensively decreased downstream in the nozzle although the NH molecule-rotational excitation temperature did not show an axial decrease. Each temperature was kept in a small range in the plume without a plate except for the NH rotational temperature for NH$_3$ gas. On the other hand, as approaching the plate, the thermodynamical nonequilibrium plasma came to be a temperature-equilibrium one because the plasma flow tended to stagnate in front of the plate. The electron temperature had a small radial variation near the plate. Both the electron number density and the heat flux decreased radially outward, and an increase in H$_2$ mole fraction raised them at a constant radial position. In cases with NH$_3$ and $N_2$+3H$_2$ a large number of NH radical with a radially wide distribution was considered to cause a large amount of energy loss, i.e., frozen flow loss, for arcjet thrusters.

  • PDF

Air horizontal jets into quiescent water

  • Weichao Li ;Zhaoming Meng;Jianchuang Sun;Weihua Cai ;Yandong Hou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2011-2017
    • /
    • 2023
  • Gas submerged jet is an outstanding thermohydraulic phenomenon in pool scrubbing of fission products during a severe nuclear accident. Experiments were performed on the hydraulic characteristics in the ranges of air mass flux 0.1-1400 kg/m2s and nozzle diameter 10-80 mm. The results showed that the dependence of inlet pressure on the mass flux follows a power law in subsonic jets and a linear law in sonic jets. The effect of nozzle submerged depth was negligible. The isolated bubbling regime, continuous bubbling regime, transition regime, and jetting regime were observed in turn, as the mass flux increased. In the bubbling regime and jetting regime, the air volume fraction distribution was approximately symmetric in space. Themelis model could capture the jet trajectory well. In the transition regime, the air volume fraction distribution loses symmetry due to the bifurcated secondary plume. The Li correlation and Themelis model showed sufficient accuracy for the prediction of jet penetration length.