• Title/Summary/Keyword: Nozzle Pressure

Search Result 1,469, Processing Time 0.026 seconds

The Recycling of Sludge from Granite Stone Cutting and Polishing (화강암 석재 가공 슬러지의 재활용)

  • 이성오;국남표;임영빈;신방섭
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.12-19
    • /
    • 1995
  • This study was carried out to remove the iron and impurities usmg hydrocyclone and HGMS for recycling of sludge from the granite stone cutting and polishing industrγ in the basic of chemi떠1 analysis and minerallogical investigation. This sludge consist of 70.9% $SiO_2$ 13.6% $Al_2O_3$ and It also contained 2.52% of $Fe_2O_7$ and 0.29% of $TiO_2$, as a main impurities to decrease the whiteness. As the result of hydrocyclone experiment, It was very good condition that are 100~150 g/l of sludge amount, 2.0~ 2.5 mm of underflow nozzle size, and 1.2~1.6 kg/$\textrm{cm}^2$ of pressure for 85% sludge product with the $-37{\mu}\textrm{m}$ size. $Fe_2O_3$ and $TiO_2$, contents by treatment of HGMS were decreased with 0.65% and 0.07% each at 10,000 gauss of magnetic field strength, and addih$\upsilon$n of Sodium tripolyphosphate as a dispersant was effected to get low grade F Fe,Ol and TiO, concentrate. PhYSIcal properties of this stone sludge product were showed 58.5% of whiteness, 1 13.4% of firing shrinkage and 3.0812 $\textrm{m}^2$/g of specific surface area.

  • PDF

Combustion Characteristics and On-site Performance Test of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns (이중 콘형 부분예혼합 GT 연료노즐의 연소특성 및 발전플랜트 실증)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June;Min, Kyungwook;Kang, Do Won
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.22-28
    • /
    • 2021
  • Combustion characteristics were examined experimentally for a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. An original model and a variant with a different fuel injection pattern are tested to compare their combustion characteristics such as NOx, CO and stability in pressurized conditions with single burner-flame and in an ambient multi-flame conditions with multi-burners. Test results show that NOx emissions are smaller for the variant, whose number of fuel holes is reduced with the same total area of fuel holes, in ambient and pressurized single-flame conditions with single burner, which results from enhanced fuel/air mixing due to a higher penetration of fuel into the air stream. The multi-burnerflame test results show that NOx emissions are smaller for the variant due to reduced flame interactions, which, on the contrary, slightly reduces the stability margin. On-site test results fromin an actual power plants also show that NOx emissions are reduced for the variant, compared with the original one, which is in agreement with the lab test results stated above.

Analysis of effect of hydrogen jet fire on tunnel structure (수소 제트화염이 터널 구조체에 미치는 영향 분석)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2021
  • A policy to expand the hydrogen economy has been established in Korea and the supply of FCEV is being expanded to realize a hydrogen society. Therefore, the supply of FCEV is expected to increase rapidly, and a solution to respond to accidents of FCEV is required. In this study, an experimental study was conducted to analyze the effect of the hydrogen jet flame generated by a FCEV on the inner wall of the tunnel and the characteristics of the internal radiant heat. For the experiment, the initial pressure of hydrogen tank was set to 700 bar, and the injection nozzle diameter was set to 1.8 mm in order to make the same as the conditions generated in the FCEV. In addition, a tunnel fire resistance test specimen having the same strength as the compressive strength of concrete applied to general tunnels of 40 MPa was manufactured and used in the experiment. The results were analyzed for the separation distance (2 m and 4 m) between the hydrogen release nozzle and the tunnel fire resistance test concrete. As the result, the maximum internal temperature of the test concrete was measured to 1,349.9℃ (2 m separation distance), and the radiant heat around the jet flame was up to 39.16 kW/m2.

Effect of field location and spray device on pesticide residue in chilli peppers (농약 살포조건이 고추열매 중 잔류에 미치는 영향)

  • Son, Kyeong-Ae;Kang, Tae-Kyeong;Park, Byeong-Jun;Kim, Taek-Kyum;Gil, Geun-Hwan;Kim, Chan-Sub;Kim, Jin-Bae;Im, Geon-Jae;Lee, Key-Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.230-235
    • /
    • 2012
  • This study was carried out to clarify effects of field location and sprayer on the level of pesticide residue in chilli peppers. As confirmed by statistical analysis, the residue levels in green pepper among three greenhouses did not show significant difference at the first day after spraying with the same engine sprayer and nozzle. But the residue levels in green peppers collected from the exposed outside of crop were 2 times higher than those from the hidden inside. The sampling site was one of variation elements of pesticide residue. The residue levels after application by knapsack engine powered sprayer were 1.7 times higher than those by manual compressed sprayer. As the spraying pressure of the engine power sprayer is 2 times higher than the commonly used pressure of the manual compressed sprayer, the pressure of the sprayer and nozzles were considered to affect on the residue levels in peppers.

Investigation of Plugging and Wastage of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction (소듐과 이산화탄소 반응에 의한 소듐유로막힘 및 재료손상 현상 연구)

  • Park, Sun Hee;Min, Jae Hong;Lee, Tae-Ho;Wi, Myung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.863-870
    • /
    • 2016
  • We investigated the physical/chemical phenomena that a slow loss of $CO_2$ inventory into sodium after the sodium-$CO_2$ boundary failure in printed circuit heat exchangers (PCHEs), which is considered for the supercritical $CO_2$ Brayton cycle power conversion system of a sodium-cooled fast reactor (SFR). The first phenomenon is plugging inside narrow sodium channels by micro cracks and the other one is damage propagation referred to as wastage combined with the corrosion/erosion effect. Experimental results of plugging shows that sodium flow immediately stopped as $CO_2$ was injected through the nozzle at $300{\sim}400^{\circ}C$ in 3 mmID sodium channels, whereas sodium flow stopped about 60 min after $CO_2$ injection in 5 mmID sodium channels. These results imply that if pressure boundary of sodium-$CO_2$ fails a narrow sodium channel would be plugged by reaction products in a short time whereas a relatively wider sodium channel would be plugged with higher concentration of reaction products. Wastage by the erosion effect of $CO_2$ (200~250 bar) hardly occurred regardless of the kinds of materials (stainless steel 316, Inconel 600, and 9Cr-1Mo steel), temperature ($400{\sim}500^{\circ}C$), or the diameter of the $CO_2$ nozzle (0.2~0.8 mm). Velocities at the $CO_2$ nozzle were specified as Mach 0.4~0.7. Our experimental results are expected to be used for determining the design parameters of PCHEs for their safeties.

A Study on Fire Extinguishing Performance of Closed Type Water Mist Nozzles for Ship's Accommodation (선박 거주구역의 방호를 위한 폐쇄형 미분무 노즐의 화재진압성능평가 연구)

  • Kwark, Ji-Hyun;Kim, Young-Han
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Since accommodation, public space and service areas where people stay for all day occupy about 70% of a huge cruise ship, they have to be protected from the fire. International Maritime Organization has resolved that a water mist system should be equipped in this cruise ship according to SOLAS II-2 Reg. 10.6 and FSS code Ch. 7. The water mist system consists of mist nozzles, pressure vessels, section valves and pump unit etc. In particular, the water mist nozzles should be recognized by fire tests in accordance with IMO Res. MSC 265(84). In this study, the fire tests for cabin, corridor, public space and storage area have been conducted to develop the water mist nozzles appropriate to the regulation. Totally 5 types of nozzles were developed and have satisfied the whole performance requirements.

Numerical Analysis of Heat Transfer and Flow Characteristics on Squealer Tip of Gas Turbine Blade (가스터빈 블레이드 팁의 열전달과 유동 특성에 대한 수치적 해석)

  • Jiao, Liu;Kang, Youngseok;Kim, Donghwa;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1062-1070
    • /
    • 2016
  • The heat transfer and flow characteristics of gas turbine blade tip were investigated in this paper by using the conjugate heat transfer analysis. The rotor inlet boundary condition profile which was taken from the first stage nozzle outlet was used to analyse. The profile contained the velocity and temperature information. This study presents the influence of tip clearance about aerodynamic loss, heat transfer coefficient and film cooling effectiveness with the squealer tip designed blade model which tip clearance variation range from 1% to 2.5% of span. Results showed that the aerodynamic loss and the heat transfer coefficient were increased when the tip clearance was increased. Especially when the tip clearance was 2% of the span, the average heat transfer coefficient on the tip region was increased obviously. The film cooling effectiveness of tip region was increasing with decreasing of the tip clearance. There was high film cooling effectiveness at cavity and near tip hole region.

Design of Full-Scale Combustion Chamber of Liquid Rocket Engine for Ground Hot Firing Tests (지상연소시험용 실물형 고압 연소기의 설계)

  • Han Yeoungmin;Kim Seunghan;Seo Seonghyeon;Cho Wonkook;Choi Hwanseok;Seol Wooseok;Lee Sooyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.299-304
    • /
    • 2005
  • The design procedures of full-scale combustion chamber with chamber pressure of 53bara, mass flow rate of 90kg/s, combustion efficiency of $94\%$ and specific impulse at ground of 253sec were described. The details of combustion performance and geometrical parameters were also given. Full-scale combustion chamber consists of the combustor head with injector/baffle and the chamber/nozzle with regenerative cooling channels. The design results of combustion chamber with ablative materials, detachable injector head with SUS baffle or baffle injector and chamber body for ground hot firing tests were given in this paper.

  • PDF

Direct-Write Fabrication of Solid Oxide Fuel Cell by Robo-Dispensing (로보 디스펜싱을 이용하여 직접묘화방식으로 제조된 고출력 소형 고체산화물 연료전지)

  • Kim, Yong-Bum;Moon, Jooho;Kim, Joosun;Lee, Jong-Ho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.425-431
    • /
    • 2005
  • Line Shaped Solid Oxide Fuel Cell (SOFC) with multilayered structure has been fabricated via direct-writing process. The cell is electrolyte of Ni-YSZ cermet anode, YSZ electrolyte and LSM cathode. They were processed into pastes for the direct writing process. Syringe filled with each electrode and electrolyte paste was loaded into the computer-controlled robe-dispensing machine and the paste was dispensed through cylindrical nozzle of 0.21 mm in diameter under the air pressure of 0.1 tow onto a moving plate with 1.22 mm/s. First of all, the anode paste was dispensed on the PSZ porous substrate, and then the electrolyte paste was dispensed. The anode/electrolyte and the PSZ substrate were co-fired at $1350^{\circ}C$ in air atmosphere for 3 h. The cathode layer was similarly dispensed and sintered at $1200^{\circ}C$ for 1 h. All the electrode/electrolyte lines were visually aligned during the direct writing process. The effective reaction area of fabricated SOFC was $0.03 cm^2$, and the thickness of anode, electrolyte and cathode was 20 $\mu$m, 15 $\mu$m, and 10 $\mu$m, respectively. The single line-shaped SOFC fabricated by direct-writing process exhibited OCV of 0.95 V and maximum power density of $0.35W/cm^2$ at $810^{\circ}C$.

Effects of the design variables and their constraints on the stage performance of an axial flow turbine (축류 터빈의 설계 변수 및 설계 변수의 제한조건이 성능에 미치는 영향)

  • 박호동;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2109-2124
    • /
    • 1991
  • A simulation program is developed to analyse the performance of an axial flow turbine stage based on the meanline prediction method. The gradient projection method is utilized to minimize the aerodynamic losses under the specified constraints on such as flow coefficient, total pressure ratio, stage power and blade loading coefficient. After obtaining the optimum point for minimizing the stage loss, a sensitivity analysis is carried out ground the optimum point to find the effects of the design variables and the design constraints on the stage performance. The result of the senitivity analysis under a constant blade loading coefficient shows that the total loss is more sensitive to the mean diameter, the absolute flow angle at nozzle outlet, the relative flow angle at rotor outlet and the axial mean velocity compared to the chords and the pitches. Moreover, the design constraints on the degree of reaction at root and the blade length-to-diameter ratio are found to be most influencial on the maximization of the overall aerodynamic efficiency.