• Title/Summary/Keyword: Nozzle Injection Pressure

Search Result 331, Processing Time 0.03 seconds

The Effects of Injector Nozzle Geometry and Operating Pressure Conditions on the Transient Fuel Spray Behavior

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.617-625
    • /
    • 2003
  • Effects of Injector nozzle geometry and operating pressure conditions such as opening pressure, ambient pressure. and injection pressure on the transient fuel spray behavior have been examined by experiments. In order to clarify the effect of internal flow inside nozzle on the external spray, flow details Inside model nozzle and real nozzle were alto investigated both experimentally and numerically. for the effect of injection pressures, droplet sizes and velocities were obtained at maximum line pressure of 21 MPa and 105 MPa. Droplet sizes produced from the round inlet nozzle were larger than those from the sharp inlet nozzle and the spray angle of the round inlet nozzle was narrower than that from the sharp inlet nozzle. With the increase of opening pressure, spray tip penetration and spray angle were increased at both lower ambient pressure and higher ambient pressure. The velocity and size profiles maintained similarity despite of the substantial change in injection pressure, however, the increased injection pressure produced a higher percentage of droplet that are likely to breakup.

A Study on the Optimum Shape of High-Pressure Injection Nozzle (고압 분사노즐의 최적형상에 관한 연구)

  • 이종선;김형철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.37-43
    • /
    • 2003
  • This study makes to flow analysis of computational fluid dynamics(CFD) according to the basic theory of turbulent flow regarding high-pressure injection nozzle. It also makes structural analysis to find out the structural validity of the optimum shape of high-pressure injection nozzle. It divides to two areas such as plunger areas and high-pressure injection nozzle area including plunger.

Effects of the fuel injection system on combustion in a diesel engine (디젤기관의 연소에 미치는 분사계의 영향)

  • Kwon, S. I.;Kim, W.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.37-44
    • /
    • 1993
  • Fuel injection system is an important tool in the exhaust emission and performance of a diesel engine. Effects of the fuel injection system in diesel combustion was investigated experimentally by measuring the performance and analyzing the combustion phenomena in a D.I. diesel engine. The selected injection parameters were nozzle opening pressure, nozzle projection length, and nozzle spray angle. From the measured results, it is shown that the fuel injection pipe diameter is an effective means to improve engine performance in a middle and high speed range and the 2 stage spring nozzle holder has the advantage of increasing the engine performance due to the initial injection pressure in a low speed range. It has been also shown that increasing nozzle opening pressure resulted in decrease in smoke, but increase in NO$_{x}$ from the engine.e.

  • PDF

A Computational Study of the Fluidic Thrust Vector Control Using Secondary Flow Injection (2차 유동 분사를 이용한 추력벡터 제어에 관한 수치해석적 연구)

  • Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.496-501
    • /
    • 2003
  • Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain the different flow features in the nozzle flow. The injection flow rate is varied by means of the injection port pressure. Test conditions are in the range of the nozzle pressure ratio from 3.0 to 8.26 and the injection pressure ratio from 0 to 1.0. The present computational results show that, for a given nozzle pressure ratio, an increase of the injection pressure ratio produces increased thrust vector angle, but decreases the thrust efficiency.

  • PDF

The Enhacned Atomization of Single Hole Nozzle by Cavitation at The Low Pressure Injection (저압 분사시 캐비테이션에 의한 단공 노즐의 미립화 향상)

  • Son, Jong-Won;Cha, Keun-Jong;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.952-957
    • /
    • 2001
  • The objectives of this investigation were to obtain an excellent spray by cavitation under the low injection pressure. When cavitation occurs in the nozzle hole, the atomization of the liquid jet enhanced considerably. In this experiments, a acrylic nozzle made the gap and installed the bypass in the nozzle hole was used to enhance the atomization of the liquid jet at the low injection pressure. The liquid flow in the nozzle hole was photographed by a transmitted light using a micro flash. The spray angle was measured macroscope images of PMAS and the Sauter mean diameter was measured PDA system. To measure the pressure of the nozzle hole, pressure transducer was used. The results of this study indicated that enhanced atomization of the liquid jet at the low injection pressure was obtained by making the gap and installing the bypass at the single hole nozzle.

  • PDF

Structural Analysis of High Pressure Injection Nozzle (고압 분사노즐의 구조해석)

  • 원종진;이종선;윤희중;김형철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.69-74
    • /
    • 2002
  • This study is object to structural analysis of high pressure injection nozzle. The finite element model was developed to compute the stress, strain for high pressure injection nozzle. For structural analysis using result from FEM code. This structural analysis results, many variables such as internal pressure, boundary condition, constraint condition and load condition are considered.

  • PDF

The Effect of Valve Geometry Variation on Injection Characteristics of Injection Valve for Marine Diesel Engines (선박디젤기관용 분사밸브의 형상변화가 분사특성에 미치는 영향에 관한 계산적 고찰)

  • Park, K.;Kim, S.Y.;Choi, C.W.
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.24-34
    • /
    • 2005
  • Injection technology is one of the important technologies in a diesel engine. Many studies have done on the injection system. In this study, the fuel chamber geometry, the orifice ratio and the needle lift of the injection valve for a marine diesel engine are varied, and simulated. The result shows that the nozzle hole size has influence on the rail pressure and injection duration sensitively. The decrease of the static pressure at the nozzle hole entrance and the increase of the dynamic pressure on the outlet surface are occurred with the increase of the nozzle hole diameter. The highest dynamic pressure of the outlet was occurred at the needle lift of 0.4mm and the nozzle hole diameter of 0.328mm in this test nozzle.

  • PDF

Measurement and Analysis of Liquid Film Thickness of Pressure-Swirl Spray for Direct-Injection Gasoline-Engines (직접분사식 가솔린엔진용 고압 스월분무의 액막두께 측정 및 해석)

  • Moon, Seok-Su;Abo-Serie, Essam;Oh, Hee-Chang;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.211-219
    • /
    • 2007
  • The liquid film thickness inside a pressure-swirl nozzle was measured, and then the measured liquid film thickness was compared with the results from previous empirical equations. The liquid film inside the nozzle was visualized using extended transparent nozzles and a microscopic imaging system, and then the measurement error was evaluated using optical geometry analysis. The high injection pressures up to 7MPa were adopted to simulate the injection conditions of the direct-injection spark-ignition engines. The totally different two injectors with different fuels, nozzle lengths, nozzle diameters and swirlers were utilized to obtain the comprehensive equations. The results showed that the liquid film thickness very slightly decreased at high injection pressures and the empirical equations overestimated the effect of injection pressure. Most of empirical equations did not include the effect of nozzle length and swirler angle, although it caused significant change in liquid film thickness. A new empirical equation was suggested based on the experimental results with the effects of fuel properties, injection pressure, nozzle diameter, nozzle length and swirler angle.

  • PDF

Spray Characteristics of Air-assisted Vortex Nozzle at Low Pressure Condition (공기보조식 와류 노즐의 저압 분무특성)

  • Kim, Woojin;Subedi, Bimal;Choi, Jang-Soo
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.82-87
    • /
    • 2015
  • A nozzle with vortex generator was used to develop the low pressure nozzle with high atomization performance and the nozzle atomized the liquid by centrifugal shear forces. In order to analyze the atomization characteristics, a shadowgraphy method was used and the measurement of droplet size was performed by using laser diffraction analyzer. The liquid injection pressure was fixed as 0.03 bar which is very low pressure and the gas injection pressures were changed from 0 bar to 2.0 bar. As a result, the breakup was achieved at the air injection pressure of 0.25 bar and over. The nozzle with the orifice diameter of 0.4 mm and the orifice gap of 0.25 mm presented small droplet diameters under 50 at the air injection pressure of 0.75 bar.

Influence of Ultra-high Injection Pressure and Nozzle Hole Diameter on Diesel Flow and Spray Characteristics under Evaporating Condition (증발 조건에서 초고압 분사와 노즐 홀 직경이 디젤 유량 및 분무 특성에 미치는 영향에 대한 연구)

  • Cho, Wonkyu;Park, Youngsoo;Bae, Choongsik;Yu, Jun;Kim, Youngho
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • Experimental study was conducted to investigate the effects of ultra-high injection pressure and nozzle hole diameter on diesel flow and spray characteristics. Electronically controlled ultra-high pressure fuel injection system was made to supply the fuel of ultra-high pressure consistently. Three injection pressures, 80, 160, and 250MPa were applied. Four type of injectors with identical eight nozzle holes were used. The four injectors have nozzle hole diameters of 115, 105, 95, and $85{\mu}m$ respectively. Injection quantity and rate were measured to investigate flow characteristics according to injection pressures and nozzle hole diameters. Mie-scattering and shadowgraph were performed to visualize liquid and vapor phases of diesel spray in a constant volume combustion chamber (CVCC). Ambient conditions of high pressure and high temperature in a diesel engine were simulated by using CVCC.