• Title/Summary/Keyword: Nozzle Flow

Search Result 1,827, Processing Time 0.023 seconds

Effect of Conductive Particles on Electrical Conductivity using EHD Ink Jet Printing Technology (EHD Ink Jet Printing 기술을 이용한 Conductive Particle의 전기전도도에 미치는 영향)

  • Ahn, Ju-Hun;Lee, Yong-Chan;Choi, Dae-San;Lee, Chang-Yull
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • ACF, which is used for the transparent electrode film is manufactured by the thermocompression method with conductive particles. However, the method has disadvantages since there are many wasted materials and the process is complex. To overcome the demerits of the conventional method, EHD printing technology with conductive particles ink is proposed. The line thickness of patterning is influenced by the characteristics of the inks and the printing conditions. Therefore, it is salient to find the most conducive conditions for the micro patterning. In this paper, the ink with conductive particles was manufactured, and the patterning results were obtained by varying the nozzle thickness and the flow rate. The electrical conductivity according to the ejection of the particles ink is obtained.

Behavior of the Ultrasonically-atomized Liquid-fuel Flame Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통해 분사되는 초음파 무화 액체연료 화염의 거동)

  • Kim, Min Cheol;Kim, Min Sung;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.1-10
    • /
    • 2018
  • An experimental study was performed for the behavior of the burner flame which results from burning of the liquid hydrocarbon fuel atomized by an ultrasonic transducer. Configurations of the flame and combustion-field were caught by both high-speed camera and thermo-graphic camera, and those images were analyzed in detail through a image post-processing. As a result, the combustion-field grew and reaction-temperature rose due to the strengthening of combustion reaction with the increasing flow-rate of carrier-gas. In addition, a phenomenon of flame flickering was discussed through the comparative analysis of the variational behavior between the visible flame and IR (Infrared) flame-field. Also, the flickering frequency of the flame was confirmed through FFT (Fast Fourier Transform) analysis employing the flame area.

A Study on the Characteristics of Temperature Distribution Related to Geometry of Tube in Hydrogen Storage Vessel (수소 저장용 탱크의 튜브 형상에 따른 온도분포 특성에 대한 수치해석 연구)

  • OH, SEUNG JUN;YOON, JEONG HWAN;JEON, KYUNG SOOK;KIM, JAE KYU;PARK, JOON HONG;CHOI, JEONGJU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.205-211
    • /
    • 2021
  • Recently, it is necessary for study on renewable energy due to environmental pollution and fossil fuel depletion. Therefore, in this study, the filling temperature according to the nozzle geometry was evaluated based on the limit temperature specified in SAEJ2601 for charging hydrogen, a new energy. There are three types of nozzles, normal, angle and round, fixed the average pressure ramp rate at 52.5 MPa/min, and the injection temperature was set at 293.4 K. As a result, the lowest temperature distribution was found in the round type, although the final temperature did not differ significantly in the three types of nozzles. In addition, Pearson's coefficient was calculated to correlate the mass flow rate with the heat transfer rate at the inner liner wall, which resulted in a strong linear relationship of 0.98 or higher.

A Study on the Encapsulation of Cosmetic Emulsion Using Microfluidics (Microfluidics를 이용한 화장품 에멀젼 캡슐레이션에 대한 연구)

  • Jeong, Nam-Gyun;Jin, Hong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.81-86
    • /
    • 2021
  • The cosmetic industry is technology-intensive in the field of fine chemistry and continues to grow globally. The functional aspects have been mainly emphasized in the past to increase the market share in these cosmetics industries. Recently, however, efforts have been made to attract the attention of consumers to the visual effects as well as the excellent performance of cosmetics at home and abroad. Accordingly, cosmetic manufacturers are trying various technologies that encapsulate the cosmetic emulsion and modify the shape, color, and texture of the emulsion capsule. The basic and easiest method of encapsulating emulsion is dropping the emulsion through the nozzle from emulsion storage. On the other hand, the existing method of encapsulating emulsion has a limit in reducing the size of the capsule. In this study, the limit was shown by theory and numerical analysis method, and the emulsion encapsulation phenomena occurring in the micro-channel were studied to apply microfluidics as an alternative.

Study on Breakup Characteristics of Gel Propellant Using Pressure Swirl Injector (압력선회형 인젝터를 이용한 젤 추진제의 분열특성 연구)

  • Cho, Janghee;Lee, Donghee;Kim, Sulhee;Lee, Donggeun;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.10-17
    • /
    • 2021
  • In this study, cold-flow test of simulant gel is conducted using a pressure swirl injector to identify spray characteristics according to gellant weight percent. Experiment results show the aircore is developed locally at the nozzle and expanded to the entire swirl chamber as the supply pressure increases. The aircore formation of simulant gel showed no significant difference compared to Newtonian fluid. The spray pattern was classified into four distinct shapes where relationship between the breakup regimes and dimensionless numbers were investigated. In the future, additional study is necessary to understand the aircore formation mechanism, stability and spray characteristics at different configuration of the swirl chamber shape.

Acoustic Modeling in a Gas Turbine Combustor with Backflow Using a Network Aproach (역류형 가스터빈 연소기에서 네트워크 접근법을 이용한 음향장 모델링)

  • Son, Juchan;Hong, Sumin;Hwang, Jeongjae;Kim, Min Kuk;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.18-26
    • /
    • 2021
  • In this work, we have developed a 1D network model aimed at predicting eigenvalues for resonance frequency analysis in a lab-scale industrial gas turbine single nozzle combustion system. Modern industrial gas turbines generally adopt combustors with very complex geometry and flow path to meet various design requirements simultaneously. The current study has developed a network model for combustion systems with backflow at the same axial location. The modeling results of resonance frequencies and mode distributions for a given system using the network model were validated from comparisons with prediction results using a 3D Helmholtz solver.

A Study on the Flow Conditions of the Combustion Air Heater Outlet for the Supersonic Combustion Experiment (초음속 연소 실험을 위한 연소식 공기 가열기 출구 유동 조건 실험 연구)

  • Lee, Eun Sung;Han, Hyung-Seok;Lee, Jae Hyuk;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.88-97
    • /
    • 2022
  • In this study, a vitiated air heater was designed and manufactured to supply high-temperature and high-pressure air to the ground test apparatus of a direct-connected supersonic combustor, and an experiment was performed to verify the target design point. By installing wedges at the upper boundary, lower boundary and center of the nozzle exit of the vitiated air heater, it was confirmed that the Mach number satisfies the 2.0 level, and the pressure of the combustion chamber was also satisfactory compared to the design point. In the case of temperature, the measured temperature deviation was large due to the degree of exposure of the thermocouple and the slow response characteristics. After that, the isolator was connected to the rear of the vitiated air heater, and the Mach number was measured in the same method, and the Mach number at the center of the isolator eixt was slightly reduced to 1.8~1.9.

Evaluation of SPACE Code Prediction Capability for CEDM Nozzle Break Experiment with Safety Injection Failure (안전주입 실패를 동반한 제어봉구동장치 관통부 파단 사고 실험 기반 국내 안전해석코드 SPACE 예측 능력 평가)

  • Nam, Kyung Ho
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.80-88
    • /
    • 2022
  • The Korean nuclear industry had developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code, which adopts a two-fluid, three-field model that is comprised of gas, continuous liquid and droplet fields and has the capability to simulate three-dimensional models. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for the accident management plan of a nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification is required for the separate and integral effect experiments. Therefore, the goal of this work is to verify the calculation capability of the SPACE code for multiple failure accidents. For this purpose, an experiment was conducted to simulate a Control Element Drive Mechanism (CEDM) break with a safety injection failure using the ATLAS test facility, which is operated by Korea Atomic Energy Research Institute (KAERI). This experiment focused on the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The results of the overall system transient response using the SPACE code showed similar trends with the experimental results for parameters such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it can be concluded that the SPACE code has sufficient capability to simulate a CEDM break with a safety injection failure accident.

Numerical simulation and experimental study of non-stationary downburst outflow based on wall jet model

  • Yongli Zhong;Yichen Liu;Hua Zhang;Zhitao Yan;Xinpeng Liu;Jun Luo;Kaihong Bai;Feng Li
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.129-146
    • /
    • 2024
  • Aiming at the problem of non-stationary wind field simulation of downbursts, a non-stationary down-burst generation system was designed by adding a nozzle and program control valve to the inlet of the original wall jet model. The computational fluid dynamics (CFD) method was used to simulate the downburst. Firstly, the two-dimensional (2D) model was used to study the outflow situation, and the database of working conditions was formed. Then the combined superposition of working conditions was carried out to simulate the full-scale measured downburst. The three-dimensional (3D) large eddy simulation (LES) was used for further verification based on this superposition condition. Finally, the wind tunnel test is used to further verify. The results show that after the valve is opened, the wind ve-locity at low altitude increases rapidly, then stays stable, and the wind velocity at each point fluctuates. The velocity of the 2D model matches the wind velocity trend of the measured downburst well. The 3D model matches the measured downburst flow in terms of wind velocity and pulsation characteris-tics. The time-varying mean wind velocity of the wind tunnel test is in better agreement with the meas-ured time-varying mean wind velocity of the downburst. The power spectrum of fluctuating wind ve-locity at different vertical heights for the test condition also agrees well with the von Karman spectrum, and conforms to the "-5/3" law. The vertical profile of the maximum time-varying average wind veloci-ty obtained from the test shows the basic characteristics of the typical wind profile of the downburst. The effectiveness of the downburst generation system is verified.

The Properties of Underwater-Hardening Epoxy Mortar Used the Rapidly Cooled Steel Slag (RCSS) (급냉 제강슬래그를 사용한 수중 경화형 에폭시 모르타르의 특성)

  • Kim, Jin-Man;Kwak, Eun-Gu;Bae, Kee-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.549-555
    • /
    • 2007
  • Although blast furnace slag has been widely used in concrete as a cementitious admixture or aggregate for many years, the slowly cooled steel slag is not used in concrete but mainly in road. Its use in concrete operates problem such as the lack of volume stability due to high free CaO content, which can be potentially hazardous in concrete. However, the rapidly cooled steel slag by atomization has a low free CaO content, a high density, and a spherical shape, so it is expected to use in concrete so much. This paper is to understand the probability that the rapid cooled steel slag can replace the silica sand used as aggregate in the epoxy mortar. We did the experimental study on the properties of the epoxy mortar having various replacement proportion of rapidly cooled steel slag. This study shown that increasing content of the rapidly cooled steel slag in epoxy mortar lead to increase largely the passing time of nozzle by O-lot, compressive strength and flexural strength. However except the flow is almost same level. So we understand that the rapidly cooled steel slag has positive effect on increasing of properties in epoxy mortar.