• 제목/요약/키워드: Nozzle Flow

검색결과 1,827건 처리시간 0.037초

가변형 임계 노즐유동에 관한 기초적 연구 (A Fundamental Study of a Variable Critical Nozzle Flow)

  • 김재형;김희동;박경암
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.484-489
    • /
    • 2003
  • The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle.

  • PDF

선택적 촉매 환원법을 위한 외부 혼합형 이유체 노즐 개발에 대한 실험적 연구 (Development of an external twin-fluid nozzle for Selective Catalytic Reduction)

  • 박정근;이충원
    • 한국분무공학회지
    • /
    • 제9권2호
    • /
    • pp.24-33
    • /
    • 2004
  • The effect of the working fluid flow conditions and nozzle geometry on the spray performance of a twin-fluid nozzle used in Selective Catalytic Reduction is investigated experimentally. The liquid pressure is varied in the range of 0.3atm to 1.5atm and the air pressure is varied from the 0.5atm to 3.0atm. relative position between liquid nozzle(internal nozzle) and air nozzle(external nozzle) tip changes front 1mm inside the air nozzle to 1mm outside the air nozzle. The orifice diameter of the air nozzle is varied with 5mm. 6mm and 7mm. Spray visualization is realized with CCD-Camera. SMD(Sauter Mean Diameter) and mean particle velocities are measured by PDPA(Phase Doppler Particle Analyzer) under various experimental conditions. The measuring point is 300mm away from the nozzle tip in the downstream spray. The experimental results are that spray angle is depended air flow rate because nozzle diameter, air pressure and nozzle tip relative positions are related air flow rate. SMD is depended air flow rate and water flow rate. Also, SMD is increased when water flow rate is bigger. SMD is decreased when Air flow rate is bigger.

  • PDF

가변형 임계노즐 유동에 관한 실험/수치해석적 연구 (Experimental / Computational Study of a variable Critical Nozzle Flow)

  • 김재형;김희동;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.167-173
    • /
    • 2003
  • For the measurement of mass flow rate at a wide range of operation conditions, it is required that the critical nozzle gas different diameters, since the mass flow rate through the critical nozzle depends on the nozzle supply conditions and the nozzle throat diameter. In the present study, both computational and experimental investigations are performed to explore the variable critical nozzle. Computational work using the 2-dimensional, axisymmetric, compressible Navier-Stokes equations are carried out to simulate the gas flow through variable critical nozzle. In experimnet, a cylinder with several different diameters is inserted into the critical nozzle to vary the nozzle throat diameter. Computational results are compared with the experimented ones. The computed results are in close agreement with experiment. It is found that the displacement and momentum thickness of variable critical nozzle are given as a function of Reynolds numbers. The discharge coefficient of the variable critical nozzle is predicted using an empirical equation.

  • PDF

임계노즐에서 발생하는 비정상유동에 관한 연구 (Study of the Unsteady Gas Flow in a Critical Nozzle)

  • 김재형;김희동;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF

연료노즐 내부유동 현상의 수치해석 (Calculation of the internal flow in a fuel nozzle)

  • 구자예;박장혁;오두석;정홍철
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.1971-1982
    • /
    • 1996
  • The breakup of liquid jet is the result of competing, unstable hydrodynamic forces acting on the liquid jet as it exit the nozzle. The nozzle geometry and up-stream injection conditions affect the characteristics of flow inside the nozzle, such as turbulence and cavitation bubbles. A set of calculation of the internal flow in a single hole type nozzle were performed using a two dimensional flow simulation under different nozzle geometry and up-stream flow conditions. The calculation showed that the turbulent intensity and discharge coefficient are related to needle position. The diesel nozzle with sharp inlet under actual engine condition has possibility of cavitation, but round inlet nozzle has no possibility of cavitation.

횡류수차 노즐형상이 성능과 내부유동에 미치는 영향 (Effect of Nozzle Shape on the Performance and Internal Flow of a Cross-Flow Hydro Turbine)

  • 최영도;임재익;김유택;이영호
    • 한국유체기계학회 논문집
    • /
    • 제11권4호
    • /
    • pp.45-51
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shape on the performance and internal flow of a cross-flow hydro turbine. CFD analysis for three kinds of nozzle shape is conducted to simulate the effect of nozzle shape. The results reveal that relatively narrow nozzle width is effective to increase the turbine efficiency and output power. Almost output power is achieved at Stage 1. Therefore, optimum design of the nozzle shape is necessary to improve the turbine performance. Recirculation flow in the runner passage decreases the turbine efficiency and output power because the flow make hydraulic loss and collision loss in the region. Air should be put into the runner passage and the recirculating flow should be suppressed by the air layer in the runner.

노즐 형상과 기판의 위치 변화가 초음속 유동에 미치는 영향에 관한 수치해석 연구 (Numerical study on the effects of nozzle geometry and substrate location in the supersonic flow)

  • 박정재;윤석구;김호영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.58.2-58.2
    • /
    • 2010
  • This paper deals with the simulation of solid particle coating technology via supersonic nozzle in vacuum environment to devote as an aerosol-deposition device. In order to improve efficiencies of nozzle and coating process, effects of shockwave, nozzle geometry, and substrate location were studied computationally under a fixed chamber pressure of 0.01316 bar which is nearly vacuous. Shockwave is the important factor affect to entire flow because shockwave in the jet flow dissipates the kinetic energy of the flow in the supersonic condition. Results show that various nozzle geometries have significant effect on the supersonic flow and we know that the supersonic nozzle should be optimized to minimize the loss of the flow. Another parameter, the distance between substrate and nozzle tip, shows little effect in this study.

  • PDF

노즐 오리피스 형상 및 형상비가 디젤과 바이오디젤 연료의 노즐 내부 및 외부 유동특성에 미치는 영향 (Effect of Nozzle Orifice Shape and Nozzle Length-to-Diameter Ratio on Internal and External Flow Characteristics of Diesel and Biodiesel Fuel)

  • 박수한;서현규;이창식
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.264-272
    • /
    • 2007
  • The aim of this study is to investigate the effects of nozzle orifice shapes and the nozzle length-to-diameter ratio(L/D) on the nozzle cavitation formation inside the orifice and the external flow pattern. The nozzle used in this work was tested the taper orifice nozzle and the rectangular orifice nozzle which was made from the transparent acrylic acid resin. For studying the effect of the nozzle L/D ratio, it was used to three L/D ratios of 3.33, 10, and 20. The cavitation flow of nozzle was visualized by using the ICCD camera and optical system. This work revealed that the flow rate and discharge coefficient($C_d$) of the taper orifice nozzle was larger than those of the rectangular orifice nozzle at the same injection pressure. The cavitation flow was observed in the nozzle orifice at the low injection pressure and the breakup of liquid jet was promoted as the L/D ratio is decreased. The cavitation of biodiesel fuel was formed at the lower injection pressure than that of diesel fuel because of higher viscosity and density.

Study on Flow Fields in Variable Area Nozzles for Radial Turbines

  • Tamaki, Hideaki;Unno, Masaru
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.47-56
    • /
    • 2008
  • The flow behind the variable area nozzle which corresponds to the flow at the leading edge of the impeller was measured with a 3-hole yaw probe and calculated with CFD. Two nozzle throat-areas were investigated. One is the smallest and the other is the largest opening for the variable nozzle. Test results agreed with the calculated results qualitatively. The leakage flow through the tip clearance of the nozzle vane significantly affected the flow field downstream of the nozzle vane with the smallest opening. However, the effect on leakage flow on the flow field downstream of the nozzle vane with the largest opening was very weak and the effect of wake is dominant.

정상류 조건에서의 디젤 연료 분사 노즐내의 유동가시화 (Visualization of the Flow in a Diesel Injection Nozzle In case of the Steady Flow Condition)

  • 김장헌;송규근
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.49-56
    • /
    • 1999
  • The effects of the internal flow in a D.I. Diesel injection nozzle on the atomization of a spray were analyzed experimentally. Flow visualization studies were made using a transparent acrylic model nozzle as a diesel nozzle . Water instead of disel fuel was used as the injection liquid. The geometry of the model nozzle was scaled up 10 times of the actual nozzle and the injection pressure for the model nozzle was adjusted so as to achieve a Reynolds number at the discharge hole that was the same as the actual nozzle. Experimental results show that when the needle lift was small, the high turbulence in the sac chamber generated by the high velocity seat flow made the spread angle of the spray plume large. Cavitation, which arose from the sac chamber, makes the spread angle of the spray plume large but the discharge coefficient small.

  • PDF