• Title/Summary/Keyword: Nox4

Search Result 724, Processing Time 0.022 seconds

Estimation of Emission Factor and Air Pollutant Emissions by Motor Vehicles (自動車에 의한 汚染物質 排出係數 및 排出量 算定에 관한 硏究)

  • 趙康來;金良均;董宗仁;嚴明道
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.55-64
    • /
    • 1987
  • Actual driving pattern of each motor vehicle type was measured and analyzed in Seoul area and vehicle emission rate was measured and traffic data were used to estimate vehicular emission factor and motor vehicle-related air pollutant emission. The analysis of contribution ratio of each vehicle type showed that LPG taxi's took 38.1% of total vehicular CO, gasoline passenger cars 37.5%, therefore, these cars are major sources of CO, gasoline passenger cars took 45.4% of total vehicular HC, motorcycles 25.3%, LPG taxi's 16.2%, so motorcycles can be said to play an important role in HC emission. For NOx, buses and trucks were thought to be major sources as buses took 36.8% and truck 26.4%. Diesel vehicles, on the other hand, took most $SO_2$ and particulate matter emission. Total emission from motor vehicles in Seoul was estimated to be 547 t/day of CO, 68t/day of HC, 163t/day of NOx, 18t/day of $SO_2$ and 19t/day of paticulate matter.

  • PDF

Performance and Emission Characteristics of Ethanol and Methanol Gasoline Blended Fuels in a Spark Ignition Engine (스파크 점화기관에서 가솔린 에탄올과 메탄올 혼합 연료의 성능과 배기 특성)

  • HAN, SUNG BIN;PARK, JUN YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.441-446
    • /
    • 2016
  • Alcohols are particularly attractive as alternative fuels because they are a renewable resource. This paper describes the performance and emission characteristics of ethanol and methanol gasoline blended fuels in a spark ignition engine. This experimental results showed that alcohol gasoline blended fuels decreased the torque, brake mean effective pressure, and brake power decreased when alcohol blended fuels were applied to a gasoline engine and also CO, HC and NOx emissions were reduced in accordance with the contents of alcohol contents.

Effect of Mixture Flow Rate on Emission Characteristics of Laminar Premixed CH4/Air Flame with Changing Combustor Pressure

  • Ma, Hai-quan;Song, Jae-hyeok;Kang, Ki-joong;Choi, Gyung-min;Kim, Duck-jool
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.269-271
    • /
    • 2012
  • To investigate emission characteristics of laminar premixed CH4/air flame, combustion experiments were conducted at three flow rates (5.3L/min, 10.6L/min, 15.5L/min) with changing the combustor pressure(-30Kpa-30Kpa). It was found that with increasing flow rate, NOx emission increased in high pressure condition, while decreased in low pressure condition; and the emission of CO decreased with increasing flow rate. For the influence of pressure, emission of NOx increased with increasing pressure regardless of flow rates, while CO emission decreased on the contrary.

  • PDF

Exhaust Emissions Characteristics of a Small Diesel Engine using Rice-bran Oil (미강유 적용 소형 디젤엔진의 배기배출물 특성)

  • 나우정;유병규;정진도
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.125-134
    • /
    • 1998
  • It seems possible, by use of vegetable oils, to solve the pollution problem caused by the exhaust gas from diesel-engine vehicles. Recently vegetable oils has received considerable attention as an alternative and clean energy source to the foreseeable depletion of world oil supplies. The objective of this study is to experimentally investigate the characteristics of exhaust emissions of a small diesel engine using light oil, rice-bran oil, heated rice-bran oil, rice-bran oil treated with ultrasonic energy. SO$_2$ emission from the pure and the treated rice-bran oils was not detected at speeds hgher than 1,800 rpm while that from the light oil was detected at all the speeds at 4/4 load. NOx emission form these vegetable oils was generally higher compared to that from the light oil for most of the test conditions. tendency opposite to that of NOx emission. The data obtained in this experiment may be applicable for the desist of small diesel engine using the alternative fuels.

  • PDF

LOW PRESSURE LOOP EGR SYSTEM ANALYSIS USING SIMULATION AND EXPERIMENTAL INVESTIGATION IN HEAVY-DUTY DIESEL ENGINE

  • Lee, S.J.;Lee, K.S.;Song, S.H.;Chun, K.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.659-666
    • /
    • 2006
  • EGR(Exhaust Gas Recirculation) systems are extensively used to reduce NOx emissions in light duty diesel engine but its application to heavy duty diesel engines is yet to be widely implemented. In this study, the simulation model for a EURO 3 engine was developed using WAVE and then its performance and emission levels were verified with experimental results. The possibility of operating a EURO 3 engine with LPL EGR system to satisfy the EURO 4 regulation was investigated. Each component of the engine was modeled using CATIA and WaveMesher. The engine test mode was ESC 13, and the injection timing and fuel quantity were changed to compensate for the reduction of engine power caused by applying EGR. As a result of the simulation, it was found that EURO 4 NOx regulation could be satisfied by applying an LPL EGR system to the current EURO 3 engine.

A LCA Case Study on Basic Materials of PC (PC 구성물질에 관한 LCA 사례연구)

  • Lee, Sung-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.3
    • /
    • pp.10-17
    • /
    • 2005
  • In this paper, the life cycle assessment(LCA) methodology is applied to Personal Computer's basic materials in order to analyze the impact to the environment. LCA data collection is carried out taking into account on main materials of PC's parts and component. And the impact assessment is the environmental burden on three factor into air emission(CO2, SOx, NOx), five factor into water emission(BOD, COD, SS, N, P), and three factor on transported substance(cl, NH4, SO4). According to the result, the environmental burden of PC's basic materials was proved to be used total energy 6,285Mj and emitted CO2 259.8kg, SOx 3,571g, NOx 330g, COD 1,328g, P 246g, N 2,434g. And this paper was presented the problems of its disposition-incinerating, landfill, and recycling.

Concrete Release agent using Low Cost High Performance Photocatalyst Materials (저비용 고성능 광촉매를 활용한 콘크리트 이형박리제 개발)

  • Park, Jong-Pil;Hwang, Byoung-Il;Yoo, Byung-Hyun;Lee, Dong-gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.610-616
    • /
    • 2020
  • Recently, the application of a photocatalyst to road structures is being attempted to solve environmental problems caused by fine particulate matter and automobile exhaust. The purpose of this study was to develop a release agent with GST (low-cost, high-performance photocatalyst produced from wastewater sludge). For this, the method of mixing and dispersing GST with the release agent was used first, and the removal performance of nitrogen oxide (NOx) was then checked. The best performance without a precipitation reaction was achieved using a stabilizing agent at 20 % in an outdoor exposure test for four weeks. The NO and NOx removal rate of the specimen demolded by applying the GST release agent developed in this study showed excellent effects of 200 to 400 % compared to the Plain material. To increase the performance of the GST release agent, it is necessary to improve the dispersibility of GST in the release agent and increase the amount of the nano-sized photocatalyst. In addition, the use of GST release agent in road structures and exposed concrete is expected to increase the NOx removal efficiency.

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Marine Diesel Engine (선박용 디젤기관의 연료분사 시기가 배기배출물 특성에 미치는 영향)

  • 임재근;최순열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.307-312
    • /
    • 2002
  • A study on the exhaust emissions of marine diesel engine with various fuel injection timing is performed experimentally .In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 0% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx, HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) NOx emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

A Study on a Combined DeNOx Process of Plasma Oxidation and $NH_3$ SCR for Diesel Engine (플라즈마 산화와 암모니아 SCR 복합탈질공정의 엔진적용 연구)

  • Song, Young-Hoon;Lee, Jae-Ok;Cha, Min-Suk;Kim, Seock-Joon;Ryu, Jeong-In
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.39-46
    • /
    • 2007
  • The technique of $NH_3$ SCR (selective catalytic reduction) assisted by plasma oxidation has been applied to a 2,000 cc diesel engine. The present combined $deNO_x$ process consists of two steps. The first step is that about 50% of emitted NO from the engine is oxidized to $NO_2$ in a plasma oxidation process. The second step is that NO and $NO_2$ are simultaneously reduced to $N_2$ in the $NH_3$ SCR process. The engine test results showed that the $deNO_x$ rates of the present combined process are higher than those of conventional SCR process by 20%. Such a high performance of the combined process is noticeable especially, when the exhaust temperature are relatively low, i.e., $170-220^{\circ}C$. To provide a feasibility of the present technique the effects of operating conditions, such as an electrical input energy, an exhaust gas temperature, an initial NO concentration, and the amount of hydrocarbon addition, were discussed.

  • PDF

The Characteristics on the Engine Performance, Smoke and NOx Emission for Variation of Fuel Injection Timing in an IDI Diesel Engine Using Biodiesel Fuel (IDI 디젤기관에서 바이오디젤유 적용시 분사시기변화에 따른 기관성능과 매연 및 NOx 배출 특성)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.75-80
    • /
    • 2008
  • Biodiesel fuel(BDF) can be effectively used as an alternative fuel in diesel engine. However, BDF may affect the performance and exhaust emissions in diesel engine because it has different physical and chemical properties from diesel fuel such as viscosity, compressibility and so on. To investigate the effect of injection timing on the characteristics of performance and exhaust emissions with BDF in IDI diesel engine, it was applied the BDF derived from soybean oil in this study. The engine was operated at seven different injection timings from TDC to BTDC $12^{\circ}CA$ and six loads at a single engine speed of 1500rpm. When the fuel injection timing was retarded, better results were showed, which may confirm the advantages of BDF. The simultaneous reduction of smoke and NOx was achieved at some fixed fuel injection timings of an IDI diesel engine.