• Title/Summary/Keyword: Novolac

Search Result 48, Processing Time 0.021 seconds

Cure Properties of Isocyanurate Type Epoxy Resin Systems for FO-WLP (Fan Out-Wafer Level Package) Next Generation Semiconductor Packaging Materials (FO-WLP (Fan Out-Wafer Level Package) 차세대 반도체 Packaging용 Isocyanurate Type Epoxy Resin System의 경화특성연구)

  • Kim, Whan Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.65-69
    • /
    • 2019
  • The cure properties of ethoxysilyl diglycidyl isocyanurate(Ethoxysilyl-DGIC) and ethylsilyl diglycidyl isocyanurate (Ethylsilyl-DGIC) epoxy resin systems with a phenol novolac hardener were investigated for anticipating fan out-wafer level package(FO-WLP) applications, comparing with ethoxysilyl diglycidyl ether of bisphenol-A(Ethoxysilyl-DGEBA) epoxy resin systems. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The isocyanurate type epoxy resin systems represented the higher cure conversion rates comparing with bisphenol-A type epoxy resin systems. The Ethoxysilyl-DGIC epoxy resin system showed the highest cure conversion rates than Ethylsilyl-DGIC and Ethoxysilyl-DGEBA epoxy resin systems. It can be figured out by kinetic parameter analysis that the highest conversion rates of Ethoxysilyl-DGIC epoxy resin system are caused by higher collision frequency factor. However, the cure conversion rate increases of the Ethylsilyl-DGEBA comparing with Ethoxysilyl-DGEBA are due to the lower activation energy of Ethylsilyl-DGIC. These higher cure conversion rates in the isocyanurate type epoxy resin systems could be explained by the improvements of reaction molecule movements according to the compact structure of isocyanurate epoxy resin.

Effects of High Temperature and Radiation on the Properties of Thermal, mechanical and Shielding Ability of Neutron Shielding Materials (고온 및 방사선이 중성자 차폐재의 열적, 역학적 및 차폐능 특성에 미치는 영향)

  • Jo, Su-Haeng;Hong, Sun-Seok;Jeong, Myeong-Su;Do, Jae-Beom;Park, Hyeon-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.404-408
    • /
    • 1999
  • Effects of heating time and radiation under high temperature on the properties of thermal, mechanical and shielding ability of modified (KNS-101), hydrogenated bisphenol-A(KNS-201) type epoxy resin and phenol-novolac(KNS-301) type epoxy resin based neutron shielding materials that are used for shipping casks for radioactive material have been investigated. At early stages, the offset temperatures of KNS-101, KNS-201 and KNS-301 increased with the heating time under high temperature, but it was rarely affected by the heating time in the later stages. In addition, the thermal conductivities of KNS-101 and KNS-201 decreased with heating time, but that of KNS-301 increased with the heating time. On the contrary, the thermal expansion coefficients of neutron shielding materials decreased with heating time. At the high temperature, the tensile strength and flexural strength of the shielding materials decreased with heating time. On the contrary, the thermal expansion coefficients of neutron shielding materials decreased with heating time. At the high temperature, the tensile strength and flexural strength of the shielding materials of KNS-101 and KNS-301 increased with heating time, but those of KNS-201 decreased with heating time. The shielding ability of neutron shielding materials slightly increased with the radiation dose, and shielding abilities of shielding materials of KNS-101 and KNS-201 were affected to a more extent than that of KNS-301 by radiation dose under high temperature.

  • PDF

Influence of Molecular Weight and Structure on the Physical Properties of the Vinylester Resin (비닐에스테르 수지의 구조 및 분자량이 물성에 미치는 영향)

  • Hong, Suk-Pyo;Choi, Sang-Goo;You, Kil-Sang
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.318-326
    • /
    • 1992
  • Vinylester resin was synthesized by reacting epoxy resin with MAA(methacrylic acid) at a equivalent ratio of 1.1/1.0 in the presence of N,N dimethyl benzylamine. Low molecular weight epoxy(DER 331) was used together with higher molecular weight epoxy(DER 662, DER 664) and a novolac epoxy(DEN 439), and the amount of DER 331 was not over 50% of the total epoxy components. Viscosity, cure time and mechanical properties of the vinylester resin were profoundly influenced by the quantity of reacted MAA, and the structure and molecular weight of the epoxy resin. Tensile and flexural strength appeared to be the greatest when DER 331 fraction was 30~40%.

  • PDF

Optimum Mixing Ratio of Epoxy for Glass Fiber Reinforced Composites with High Thermal Stability (에폭시 배합비에 따른 내열성 복합재료 최적조건)

  • Shin, Pyeong-Su;Wang, Zuo-Jia;Kwon, Dong-Jun;Choi, Jin-Yeong;Sung, Ill;Jin, Dal-Saem;Kang, Suk-Won;Kim, Jeong-Cheol;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.168-173
    • /
    • 2014
  • The optimum condition of glass fiber/epoxy composites was investigated according to mixing ratio of two epoxy matrices. Novolac type epoxy and isocyanate modified epoxy were used as composites matrix. Based on chemical composition of mixing matrix, optimum mixing ratio of epoxy resins was obtained through various experiments. In order to investigate thermal stability and interface of epoxy resin, glass transition temperature was observed by DSC instrument, and static contact angle was measured by reflecting microscope. Change of IR peak and $T_g$ was conformed according to different epoxy mixing ratio. After fabrication of glass fiber/epoxy composites, tensile, compression, and flexural properties were tested by UTM by room and high temperature. The composites exhibited best mechanical properties when epoxy mixing ratio was 1:1.

Synthesis and Curing Behavior of Crystalline Biphenyl Epoxy Resin (결정성 바이페닐 에폭시 합성 및 경화 거동 연구)

  • Choi, Bong-Goo;Choi, Ho-Kyoung;Choi, Jae-Hyun;Choi, Joong-So
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.44-51
    • /
    • 2020
  • The basic catalyst 1-benzyl-3-methyl-imidazolium hexafluoroantimonate (BMH) was synthesized and analyzed by FT-IR and 1H-NMR. A crystalized biphenyl-based epoxy was synthesized by using tetramethyl biphenol (TMBP) and epichlorohdrine. In order to consider the curing tendency of the synthesized BMH, the mass ratio was changed to 0.5, 1.0, 2.0 wt.% under heated conditions and the curing tendency was analyzed by differential scanning calorimeter (DSC). As a result, the BMH catalyst showed a fast curing result in the stepwise heating pr℃ess of the biphenol-A epoxy and the cationic polymer. From these results, the BMH catalyst showed excellent thermal stability as a potential heat curing catalyst. In addition, we considered the application possibility of epoxy molding compound (EMC) which required a skeleton structure and a high heat resistance because the synthesized biphenyl epoxy had a characteristic of rapidly lowering viscosity at a constant temperature and a rigid skeleton structure of biphenol. As a result, it was confirmed that the TMBP-based epoxy developed in this study was composed of a crystalline structure, and a curing reaction was observed with a Novolac resin at a high temperature. In the presence of a catalyst, a curing reaction was observed around 150 ℃ and thus TMBP-based epoxy was successfully applied as a raw material of EMC.

Condensable Gas Separation using Phenol! Alumina Composite Activated Carbon Hollow Fiber Membranes (페놀수지/알루미나 복합 활성탄소중공사막을 이용한 응축성 기체 분리)

  • Shin, Kyung-Yong;Park, You-In;Kim, Beom-Sik;Koo, Kee-Kahb
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.312-319
    • /
    • 2010
  • Carbon membrane materials have received considerable attention for the gas separation including hydrocarbon mixture of ingredients of the volatile organic compounds(VOCs) because they possess their higher selectivity, permeability, and thermal stability than the polymeric membranes. The use of activated carbon membranes makes it possible to separate continuously the VOCs mixture by the selective adsorption-diffusion mechanism which the condensable components are preferentially adsorbed in to the micropores of the membrane. The activated carbon hollow fiber membranes with uniform adsorptive micropores on the wall of open pores and the surface of the membranes have been fabricated by the carbonization of a thin film of phenolic resin deposited on porous alumina hollow fiber membrane. Oxidation, carbonization, and activation processing variables were controlled under different conditions in order to improve the separation characteristics of the activated carbon membrane. Properties of activated carbon hollow fiber membranes and the characterization of a gas permeation by pyrolysis conditions were studied. As the result, the activated carbon hollow fiber membranes with good separation capabilities by the molecular size mechanism as well as selective adsorption on the pores surface followed by surface diffusion effective in the recovery hydrocarbons have been obtained. Therefore, these activated carbon membranes prepared in this study are shown as promising candidate membrane for separation of VOCs.

Fabrication and Characteristics of Epoxy Resin-Type Based Neutron Shielding Materials (에폭시수지계 중성자 차폐재 제조 및 특성)

  • Cho, Soo-Haeng;Kim, Ik-Soo;Do, Jae-Bum;Ro, Seung-Gy;Park, Hyun-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.457-463
    • /
    • 1998
  • New neutron shielding materials, KNS-201, KNS-301 and KNS-601 have been fabricated to be used for radioactive material shipping and storage cask. The base materials are a modified and a hydrogenated bisphenol- A type and novolac type epoxy resin, and aluminium hydroxide and boron carbide are added. These shielding materials offer good fluidity at processing, which makes it possible to form this resin shield into complicated geometric shapes such as radioactive material shipping and storage cask. Several measurements were made for the shielding materials to evaluate the thermal and mechanical properties and radiation resistance. The properties of the shielding materials are as follows: onset temperatures 2S7~28$0^{\circ}C$, thermal conductivities 0.9S~1.14W/m. K, thermal expansion coefficients 0.77~1.26x$10_{-6}{\circ}C_{-1}$, combustion characteristics < 80$0^{\circ}C$, ATB(average time of burning) < 5sec, AEB(average extent of burning) < 5mm, tensile strengths 2.5~3.2kg/$\textrm{mm}^2$, compressive strengths 13.2~1S.2kg/$\textrm{mm}^2$, flexural strengths 5.2 -6.4kg/$\textrm{mm}^2$. In general, the concerned properties of KNS-201, KNS-301 and KNS-601 were revealed to be better than those of NS-4- FR. foreign neutron shielding material. It is also observed that the radiation resistance of KNS- 601 was better than those of KNS-201 and KNS-301.

  • PDF

Thermal Properties and Microencapsulation of a Phosphate Flame Retardant with a Epoxy Resin (에폭시 수지를 이용한 인계 난연제의 마이크로캡슐화 및 열적 특성 연구)

  • Baek Kyung-Hyun;Lee Jun-Young;Hong Sang-Hyun;Kim Jung-Hyun
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.404-411
    • /
    • 2004
  • The microcapsules containing triphenyl phosphate (TPP), a flame retardant, were prepared by phase-inversion emulsification technique using the epoxy resin (Novolac type) with excellent physical properties and network structure. This microencapsulation process was adopted for the protection of TPP evaporation and wetting of polymer composite during the polymer blend processing. The TPP, epoxy resin and mixed surfactants were emulsified to oil in water (O/W) by the phase inversion technology and then conducted on the crosslinking of epoxy resin by in-situ polymerization. The capsule size and size distribution of TPP capsules was controlled by mixed surfactant ratio, concentration and TPP contents, The formation and thermal property of TPP capsules were measured by differential scanning calorimetry and thermogravimetric analysis. The morphology and size of TPP capsules were also investigated by scanning and transmission electron microscopies. As the surfactant concentration increased, the TPP capsules were more spherical and mono-dispersed at the same weight ratio of mixed surfactants (F127: SDBS).