• Title/Summary/Keyword: Novel view synthesis

Search Result 20, Processing Time 0.017 seconds

3D View Synthesis with Feature-Based Warping

  • Hu, Ningning;Zhao, Yao;Bai, Huihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5506-5521
    • /
    • 2017
  • Three-dimensional video (3DV), as the new generation of video format standard, can provide the viewers with a vivid screen sense and a realistic stereo impression. Meanwhile the view synthesis has become an important issue for 3DV application. Differently from the conventional methods based on depth, in this paper we propose a new view synthesis algorithm, which can employ the correlation among views and warp in the image domain only. There are mainly two contributions. One is the incorporation of sobel edge points into feature extraction and matching, which can obtain a better stable homography and then a visual comfortable synthesis view compared to SIFT points only. The other is a novel image blending method proposed to obtain a better synthesis image. Experimental results demonstrate that the proposed method can improve the synthesis quality both in subjectivity and objectivity.

Voxel-wise UV parameterization and view-dependent texture synthesis for immersive rendering of truncated signed distance field scene model

  • Kim, Soowoong;Kang, Jungwon
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • In this paper, we introduced a novel voxel-wise UV parameterization and view-dependent texture synthesis for the immersive rendering of a truncated signed distance field (TSDF) scene model. The proposed UV parameterization delegates a precomputed UV map to each voxel using the UV map lookup table and consequently, enabling efficient and high-quality texture mapping without a complex process. By leveraging the convenient UV parameterization, our view-dependent texture synthesis method extracts a set of local texture maps for each voxel from the multiview color images and separates them into a single view-independent diffuse map and a set of weight coefficients for an orthogonal specular map basis. Furthermore, the view-dependent specular maps for an arbitrary view are estimated by combining the specular weights of each source view using the location of the arbitrary and source viewpoints to generate the view-dependent textures for arbitrary views. The experimental results demonstrate that the proposed method effectively synthesizes texture for an arbitrary view, thereby enabling the visualization of view-dependent effects, such as specularity and mirror reflection.

View synthesis with sparse light field for 6DoF immersive video

  • Kwak, Sangwoon;Yun, Joungil;Jeong, Jun-Young;Kim, Youngwook;Ihm, Insung;Cheong, Won-Sik;Seo, Jeongil
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.24-37
    • /
    • 2022
  • Virtual view synthesis, which generates novel views similar to the characteristics of actually acquired images, is an essential technical component for delivering an immersive video with realistic binocular disparity and smooth motion parallax. This is typically achieved in sequence by warping the given images to the designated viewing position, blending warped images, and filling the remaining holes. When considering 6DoF use cases with huge motion, the warping method in patch unit is more preferable than other conventional methods running in pixel unit. Regarding the prior case, the quality of synthesized image is highly relevant to the means of blending. Based on such aspect, we proposed a novel blending architecture that exploits the similarity of the directions of rays and the distribution of depth values. By further employing the proposed method, results showed that more enhanced view was synthesized compared with the well-designed synthesizers used within moving picture expert group (MPEG-I). Moreover, we explained the GPU-based implementation synthesizing and rendering views in the level of real time by considering the applicability for immersive video service.

View Synthesis Using OpenGL for Multi-viewpoint 3D TV (다시점 3차원 방송을 위한 OpenGL을 이용하는 중간영상 생성)

  • Lee, Hyun-Jung;Hur, Nam-Ho;Seo, Yong-Duek
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.507-520
    • /
    • 2006
  • In this paper, we propose an application of OpenGL functions for novel view synthesis from multi-view images and depth maps. While image based rendering has been meant to generate synthetic images by processing the camera view with a graphic engine, little has been known about how to apply the given images and depth information to the graphic engine and render the scene. This paper presents an efficient way of constructing a 3D space with camera parameters, reconstructing the 3D scene with color and depth images, and synthesizing virtual views in real-time as well as their depth images.

Synthesis of Yakuchinone Derivatives and Their Inhibitory Activities on Nitric Oxide Synthesis (Yakuchinone과 그 유도체의 합성 및 Nitric Oxide생성 저해효능)

  • 윤정화;안한나;류재하;김희두
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Novel yakuchinone derivatives have been designed, synthesized and evaluated their inhibitory activity of NO production in lipopolysaccharide (LPS)-activated macrophages. From this study, some enone compounds have been found to be highly active in the assay. In view of the importance of NO in septic shock and inflammation, these compounds may be useful candidates for the development of new drug to treat endotoxemia and inflammation accompanying overproduction of NO.

  • PDF

Chronological Switch from Translesion Synthesis to Homology-Dependent Gap Repair In Vivo

  • Fujii, Shingo;Isogawa, Asako;Fuchs, Robert P.
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.297-302
    • /
    • 2018
  • Cells are constantly exposed to endogenous and exogenous chemical and physical agents that damage their genome by forming DNA lesions. These lesions interfere with the normal functions of DNA such as transcription and replication, and need to be either repaired or tolerated. DNA lesions are accurately removed via various repair pathways. In contrast, tolerance mechanisms do not remove lesions but only allow replication to proceed despite the presence of unrepaired lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS), which is an error-prone strategy and an accurate strategy based on homologous recombination (homology-dependent gap repair [HDGR]). Thus, the mutation frequency reflects the relative extent to which the two tolerance pathways operate in vivo. In the present paper, we review the present understanding of the mechanisms of TLS and HDGR and propose a novel and comprehensive view of the way both strategies interact and are regulated in vivo.

Hard Example Generation by Novel View Synthesis for 3-D Pose Estimation (3차원 자세 추정 기법의 성능 향상을 위한 임의 시점 합성 기반의 고난도 예제 생성)

  • Minji Kim;Sungchan Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • It is widely recognized that for 3D human pose estimation (HPE), dataset acquisition is expensive and the effectiveness of augmentation techniques of conventional visual recognition tasks is limited. We address these difficulties by presenting a simple but effective method that augments input images in terms of viewpoints when training a 3D human pose estimation (HPE) model. Our intuition is that meaningful variants of the input images for HPE could be obtained by viewing a human instance in the images from an arbitrary viewpoint different from that in the original images. The core idea is to synthesize new images that have self-occlusion and thus are difficult to predict at different viewpoints even with the same pose of the original example. We incorporate this idea into the training procedure of the 3D HPE model as an augmentation stage of the input samples. We show that a strategy for augmenting the synthesized example should be carefully designed in terms of the frequency of performing the augmentation and the selection of viewpoints for synthesizing the samples. To this end, we propose a new metric to measure the prediction difficulty of input images for 3D HPE in terms of the distance between corresponding keypoints on both sides of a human body. Extensive exploration of the space of augmentation probability choices and example selection according to the proposed distance metric leads to a performance gain of up to 6.2% on Human3.6M, the well-known pose estimation dataset.

Gaussian Blending: Improved 3D Gaussian Splatting for Model Light-Weighting and Deep Learning-Based Performance Enhancement

  • Yeong-In Lee;Jin-Nyeong Heo;Ji-Hwan Moon;Ha-Young Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.23-32
    • /
    • 2024
  • NVS (Novel View Synthesis) is a field in computer vision that reconstructs new views of a scene from a set of input views. Real-time rendering and high performance are essential for NVS technology to be effectively utilized in various applications. Recently, 3D-GS (3D Gaussian Splatting) has gained popularity due to its faster training and inference times compared to those of NeRF (Neural Radiance Fields)-based methodologies. However, since 3D-GS reconstructs a 3D (Three-Dimensional) scene by splitting and cloning (Density Control) Gaussian points, the number of Gaussian points continuously increases, causing the model to become heavier as training progresses. To address this issue, we propose two methodologies: 1) Gaussian blending, an improved density control methodology that removes unnecessary Gaussian points, and 2) a performance enhancement methodology using a depth estimation model to minimize the loss in representation caused by the blending of Gaussian points. Experiments on the Tanks and Temples Dataset show that the proposed methodologies reduce the number of Gaussian points by up to 4% while maintaining performance.

Parallax Map Preprocessing Algorithm for Performance Improvement of Hole-Filling (홀 채우기의 성능 개선을 위한 시차지도의 전처리 알고리즘)

  • Kim, Jun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.62-70
    • /
    • 2013
  • DIBR(Depth Image Based Rendering) is a kind of view synthesis algorithm to generate images at free view points from the reference color image and its depth map. One of the main challenges of DIBR is the occurrence of holes that correspond to uncovered backgrounds at the synthesized view. In order to cover holes efficiently, two main approaches have been actively investigated. One is to develop preprocessing algorithms for depth maps or parallax maps to reduce the size of possible holes, and the other is to develop hole filling methods to fill the generated holes using adjacent pixels in non-hole areas. Most conventional preprocessing algorithms for reducing the size of holes are based on the smoothing process of depth map. Filtering of depth map, however, attenuates the resolution of depth map and generates geometric distortions. In this paper, we proposes a novel preprocessing algorithm for parallax map to improve the performance of hole-filling by avoiding the drawbacks of conventional methods.

Behavior-level Service Composition by Variable Abstraction

  • Kil, Hyun-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.59-67
    • /
    • 2019
  • The service composition based on Service-Oriented Architecture(SOA) can make us view various machines or its functionalities in the Web or Internet-of-Things environment as 'service', and efficiently create new value-added services that users want by compositing different services if there is no service to satisfy the client. The service composition problem with respect to behavioral descriptions deals with the automatic synthesis of a coordinator service that controls a set of services to reach a goal state. Despite its importance, however, solving the service composition problem with only partial observations remains to be doubly exponential in the number of variables in service descriptions, rendering any attempts to compute an exact solution for modest size impractical. Toward this challenge, in this paper, we propose novel approximation-based approaches using abstraction methods. We empirically validate that our proposals can solve realistic problems efficiently.