• Title/Summary/Keyword: Novel chemical structure

Search Result 379, Processing Time 0.033 seconds

Environmental Monitoring of Heavy Metals and Arsenic in Soils Adjacent to CCA-Treated Wood Structures in Gangwon Province, South Korea

  • Abdelhafez, Ahmed A.;Awad, Yasser M.;Kim, Min-Su;Ham, Kwang-Joon;Lim, Kyoung-Jae;Joo, Jin-Ho;Yang, Jae-E.;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.340-346
    • /
    • 2009
  • Chromated copper arsenate (CCA) is a chemical wood preservative that has been intensively used to protect wood from decay during the last few decades. CCA is widely used to build structures such as decks, fences, playgrounds and boardwalks. However, structures constructed of CCA-treated wood have caused adverse environmental effects due to leaching of Cr, Cu and As into surrounding soils. This research was conducted to monitor the vertical and horizontal distribution of Cr, Cu and As in soils adjacent to CCA-treated wood structures in Korea. Two structures constructed with CCA-treated wood were selected at Hongcheon and Chuncheon in Gangwon Province, South Korea. Eleven soil profile samples were collected at depths of 0 to 80 cm at each site, while 12 surface soil samples were collected at distances of 0 to 200 cm from each structure. The soil chemical properties, soil particle size distribution and total metal concentrations were then determined. The results revealed that soils near CCA-treated wood structures were generally contaminated with Cr, Cu and As when compared to the background concentration of each metal. In addition, the concentrations of Cr, Cu and As in soils decreased as the vertical and horizontal distance from the structure increased. Further studies should be conducted to evaluate the mobility and distribution of these metals in the environment as well as to develop novel technologies for remediation of CCA contaminated soils.

A Zinc Porphyrin Sensitizer Modified with Donor and Acceptor Groups for Dye-Sensitized Solar Cells

  • Lee, Seewoo;Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3052-3058
    • /
    • 2014
  • In this article, we have designed and synthesized a novel donor-${\pi}$-acceptor (D-${\pi}$-A) type porphyrin-based sensitizer (denoted UI-5), in which a carboxyl anchoring group and a 9,9-dimethyl fluorene were introduced at the meso-positions of porphyrin ring via phenylethynyl and ethynyl bridging units, respectively. Long alkoxy chains in ortho-positions of the phenyls were supposed to reduce the degree of dye aggregation, which tends to affect electron injection yield in a photovoltaic cell. The cyclic voltammetry was employed to determine the band gap of UI-5 to be 1.41 eV based on the HOMO and LUMO energy levels, which were estimated by the onset oxidation and reduction potentials. The incident monochromatic photon-to-current conversion efficiency of the UI-5 DSSC assembled with double-layer (20 nm-sized $TiO_2$/400 nm-sized $TiO_2$) film electrodes appeared lower upon overall ranges of the excitation wavelengths, but exhibited a higher value over the NIR ranges (${\lambda}$ = 650-700 nm) compared to the common reference sensitizer N719. The UI-5-sensitized cell yielded a relatively poor device performance with an overall conversion efficiency of 0.74% with a short circuit photocurrent density of $3.05mA/cm^2$, an open circuit voltage of 0.54 mV and a fill factor of 0.44 under the standard global air mass (AM 1.5) solar conditions. However, our report about the synthesis and the photovoltaic characteristics of a porphyrin-based sensitizer in a D-${\pi}$-A structure demonstrated a significant complex relationship between the sensitizer structure and the cell performance.

Structure-Guided Identification of Novel Phenolic and Phenolic Amide Allosides from the Rhizomes of Cimicifuga heracleifolia

  • Yim, Soon-Ho;Kim, Hyun-Jung;Jeong, Na-Ri;Park, Ki-Deok;Lee, Young-Ju;Cho, Sung-Dong;Lee, Ik-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1253-1258
    • /
    • 2012
  • Two phenolic allopyranosides and two phenolic amide allopyranosides, along with eight known phenolic compounds, including cimicifugic acids, shomaside B, fukiic acid, isoferulic acid, and piscidic acid, were isolated from the n-butanolic extract of rhizomes of Cimicifuga heracleifolia. On-line spectroscopic data for UV, NMR, and MS from a combination of LC-NMR and LC-MS techniques directly and rapidly provided sufficient structural information to identify and confirm all the structures of major phenolic compounds in the extract, in addition to their HPLC profiles. This combined analytic information was then used as a dereplication tool for structure-guided screening in order to isolate unknown phenolic compounds in the extract. Successive fractionation and purification using semi-preparative HPLC acquired four unknown allopyranosides, and their structures were identified as cis-ferulic acid 4-O-${\beta}$-D-allopyranoside, trans-ferulic acid 4-O-${\beta}$-D-allopyranoside, trans-feruloyltyramine 4-O-${\beta}$-D-allopyranoside, and trans-feruloyl-(3-O-methyl)dopamine 4-O-${\beta}$-D-allopyranoside, based on a subsequent spectroscopic interpretation.

Designing Hypothesis of 2-Substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl] Acetamide Analogs as Anticancer Agents: QSAR Approach

  • Bedadurge, Ajay B.;Shaikh, Anwar R.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.744-754
    • /
    • 2013
  • Quantitative structure-activity relationship (QSAR) analysis for recently synthesized imidazole-(benz)azole and imidazole - piperazine derivatives was studied for their anticancer activities against breast (MCF-7) cell lines. The statistically significant 2D-QSAR models ($r^2=0.8901$; $q^2=0.8130$; F test = 36.4635; $r^2$ se = 0.1696; $q^2$ se = 0.12212; pred_$r^2=0.4229$; pred_$r^2$ se = 0.4606 and $r^2=0.8763$; $q^2=0.7617$; F test = 31.8737; $r^2$ se = 0.1951; $q^2$ se = 0.2708; pred_$r^2=0.4386$; pred_$r^2$ se = 0.3950) were developed using molecular design suite (VLifeMDS 4.2). The study was performed with 18 compounds (data set) using random selection and manual selection methods used for the division of the data set into training and test set. Multiple linear regression (MLR) methodology with stepwise (SW) forward-backward variable selection method was used for building the QSAR models. The results of the 2D-QSAR models were further compared with 3D-QSAR models generated by kNN-MFA, (k-Nearest Neighbor Molecular Field Analysis) investigating the substitutional requirements for the favorable anticancer activity. The results derived may be useful in further designing novel imidazole-(benz)azole and imidazole-piperazine derivatives against breast (MCF-7) cell lines prior to synthesis.

Synthesis of Borosilicate Zeotypes by Steam-assisted Conversion Method (수증기 쪼임법에 의한 제올라이트형 보로실리케이트 제조방법)

  • Mansour, R.;Lafjah, M.;Djafri, F.;Bengueddach, A.
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.178-185
    • /
    • 2007
  • Intermediate pentasil borosilicate zeolite-like materials have been crystallized by a novel method named steam-assisted conversion, which involves vapor-phase transport of water. Indeed, amorphous powders obtained by drying Na2O.SiO2.B2O3.TBA2O gels of various compositions using different boron sources are transformed into crystalline borosilicate zeolite belonging to pentasil family structure by contact with vapors of water under hydrothermal conditions. Using a variant of this method, a new material which has an intermediate structure of MFI/MEL in the ratio 90:10 was crystallized. The results show that steam and sufficiently high pH in the reacting hydrous solid are necessary for the crystallization to proceed. Characterization of the products shows some specific structural aspects which may have its unique catalytic properties. X-ray diffraction patterns of these microporous crystalline borosilicates are subjected to investigation, then, it is shown that the product structure has good crystallinity and is interpreted in terms of regular stacking of pentasil layers correlated by inversion centers (MFI structure) but interrupted by faults consisting of mirror-related layers (MEL structure). The products are also characterized by nitrogen adsorption at 77 K that shows higher microporous volume (0.160 cc/g) than that of pure MFI phase (0.119 cc/g). The obtained materials revealed high surface area (~600 m2/g). The infrared spectrum reveals the presence of an absorption band at 900.75 cm-1 indicating the incorporation of boron in tetrahedral sites in the silicate matrix of the crystalline phase.

Nitric Oxide Delivery using Nanostructures and Its Biomedical Applications (나노 구조체를 이용한 산화질소 전달체에 대한 연구 및 바이오메디컬 응용)

  • Choi, Yunseo;Jeong, Hyejoong;Park, Kyungtae;Hong, Jinkee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.305-312
    • /
    • 2019
  • The discovery of nitric oxide (NO) as a major signaling molecule in a number of pathophysiological processes - vasodilation, immune response, platelet aggregation, wound repair, and cancer biology - has led to the development of various exogeneous NO delivery systems. However, the development of ideal delivery system for human body application is still left as a challenge due to its high reactivity and short half-life in physiological condition. In this article, an overview of several nano-structures as potential NO delivery system will be presented, along with their recent research results and biomedical applications. Nano-size delivery system has immense advantages compared to others due to its high surface-to-volume ratio and capability for surface modification; thus, it has been proven to be effective in delivering nitric oxide with enhanced performance. Through this novel nano-structure delivery system, we are expecting to achieve sustained release of nitric oxide within adequate range of concentration, which ensures desired drug effects at the target site. Among different nano-structures, in particular, nanoparticle, microemulsion and nanofilm will be reviewed and compared to each other in respect of nitric oxide release profile. The proposed nano-structures for exogeneous NO delivery have a biological significance in that it can be further utilized in diverse biomedical fields as a highly promising therapeutic method.

Superhydrophobic nano-hair mimicking for water strider leg using CF4 plasma treatment on the 2-D and 3-D PTFE patterned surfaces

  • Shin, Bong-Su;Moon, Myoung-Woon;Kim, Ho-Young;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.365-365
    • /
    • 2010
  • Similar to the superhydrophobic surfaces of lotus leaf, water strider leg is attributed to hierarchical structure of micro pillar and nano-hair coated with low surface energy materials, by which water strider can run and even jump on the water surface. In order to mimick its leg, many effort, especially, on the fabrication of nanohairs has been made using several methods such as a capillarity-driven molding and lithography using poly(urethane acrylate)(PUA). However most of those effort was not so effective to create the similar structure due to its difficulty in the fabrication of nanoscale hairy structures with hydrophobic surface. In this study, we have selected a low surface energy polymeric material of polytetrafluoroethylene (PTFE, or Teflon) assisted with surface modification of CF4 plasma treatment followed by hydrophobic surface coating with pre-cursor of hexamethyldisiloxane (HMDSO) using a plasma enhanced chemical vapor deposition (PE-CVD). It was found that the plasma energy and duration of CF4 treatment on PTFE polymer could control the aspect ratio of nano-hairy structure, which varying with high aspect ratio of more than 20 to 1, or height of over 1000nm but width of 50nm in average. The water contact angle on pristine PTFE surface was measured as approximately $115^{\circ}$. With nanostructures by CF4 plasma treatment and hydrophobic coating of HMDSO film, we made a superhydrophobic nano-hair structure with the wetting angle of over $160^{\circ}C$. This novel fabrication method of nanohairy structures has been applied not only on 2-D flat substrate but also on 3-D substrates like wire and cylinder, which is similarly mimicked the water strider's leg.

  • PDF

Novel synthesis of nanocrystalline thin films by design and control of deposition energy and plasma

  • Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.77-77
    • /
    • 2016
  • Thin films synthesized by plasma processes have been widely applied in a variety of industrial sectors. The structure control of thin film is one of prime factor in most of these applications. It is well known that the structure of this film is closely associated with plasma parameters and species of plasma which are electrons, ions, radical and neutrals in plasma processes. However the precise control of structure by plasma process is still limited due to inherent complexity, reproducibility and control problems in practical implementation of plasma processing. Therefore the study on the fundamental physical properties that govern the plasmas becomes more crucial for molecular scale control of film structure and corresponding properties for new generation nano scale film materials development and application. The thin films are formed through nucleation and growth stages during thin film depostion. Such stages involve adsorption, surface diffusion, chemical binding and other atomic processes at surfaces. This requires identification, determination and quantification of the surface activity of the species in the plasma. Specifically, the ions and neutrals have kinetic energies ranging from ~ thermal up to tens of eV, which are generated by electron impact of the polyatomic precursor, gas phase reaction, and interactions with the substrate and reactor walls. The present work highlights these aspects for the controlled and low-temperature plasma enhanced chemical vapour disposition (PECVD) of Si-based films like crystalline Si (c-Si), Si-quantum dot, and sputtered crystalline C by the design and control of radicals, plasmas and the deposition energy. Additionally, there is growing demand on the low-temperature deposition process with low hydrogen content by PECVD. The deposition temperature can be reduced significantly by utilizing alternative plasma concepts to lower the reaction activation energy. Evolution in this area continues and has recently produced solutions by increasing the plasma excitation frequency from radio frequency to ultra high frequency (UHF) and in the range of microwave. In this sense, the necessity of dedicated experimental studies, diagnostics and computer modelling of process plasmas to quantify the effect of the unique chemistry and structure of the growing film by radical and plasma control is realized. Different low-temperature PECVD processes using RF, UHF, and RF/UHF hybrid plasmas along with magnetron sputtering plasmas are investigated using numerous diagnostics and film analysis tools. The broad outlook of this work also outlines some of the 'Grand Scientific Challenges' to which significant contributions from plasma nanoscience-related research can be foreseen.

  • PDF

The Geometrical Isomerization on Acidification in Hexamolybdoheteropoly Oxometalate. The Crystal Structure of $(NH_{4})_{4.5}[H_{3.5}\alpha-PtMo_{6}O_{24}].\;1.5H_{2}O,\;(NH_{4})_{4}[H_{4}\beta-PtMo_{6}O_{24}].\;1.5H_{2}O,\;and\;K_{3.5}[H_{4.5}\alpha-PtMo_{6}O_{24}].\;3H_{2}O$

  • Lee, Uk;Yukiyoshi Sasaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 1994
  • $(NH_4)_{4.5}[H_{3.5}{\alpha}-PtMo_6O_{24}]{\cdot}1.5\;H_2O(A),\;(NH_4)_4[H_4{\beta}-PtMo_6O_{24}]{\cdot}1.5\;H_2O(B),\;and\;K_{3.5}[H_{4.5}{\alpha}-PtMo_6O_{24}]{\cdot}3\;H_2O(C)$ have been synthesized and their molecular structures have been also determined by single-crystal X-ray diffraction technique. The space groups, unit cell parameters, and R factors are as follows: Compound A, monoclinic, $A_{2/a}$, a= 19.074 (3), b=21.490 (3), c=15.183 (2) ${\AA};\;{\beta}$=109.67 (1) ${\AA}$; z=8; R=0.075($IF_0I>4{\sigma}(IF_0I);$ Compound B, triclinic, P$bar{1}$, a=10.776 (2), b=15.174 (4), c=10.697 (3) ${\AA};\;{\alpha}$ =126.29 (2), ${\beta}$=111.55 (2), ${\gamma}$=93.18 (2) ${\AA}$; Z=2; R=0.046($IF_0I>3{\sigma}(IF_0I);$): Compound C, triclinic, Pl, a=12.426 (2), b=13.884 (2), c=10.089 (1) ${\AA}$; ${\alpha}$=102.59 (2), ${\beta}$=110.73 (1), ${\gamma}$=53.93 (1) ${\AA}$; Z=2; R=0.074 ($IF_0I>3{\sigma}(IF_0I)$. Compounds A and C contain the well-known Anderson structure (planar structure) heteropoly oxometalate having approximate $bar{3}_m(D_{3d})$ symmetry, while compound B contains the bent structure heteropoly oxometalate having appproximate $2_{mm}(C2_v)$ symmetry. The bent structure and the planar one are geometrical isomers. These compounds are rot only novel heteroply molybdates containing platinate(IV) but also the first example of geometrical isomerism in the hexamolybdoheteropoly oxometalates. That isomerization surprisingly occurred because of the change of only 0.5 non-acidic hydrogen atom attached to the polyanion such as $[H_{3.5}{\alpha} -PtMo_6O_{24}]^{4.5-}{\to}[H_4{\beta}-PtMo_6O_{24}]^{4-}{\to}[H_{4.5}{\alpha} -PtMo_6O_{24}]^{3.5-}$. It seems that the gradual protonation of the polyanion plays an important role in that isomerism. These heteropolyanions form dimers by strong hydrogen bonds between two heteropolyanions in the respective crystal system.

Pharmacophore Models of Paclitaxel- and Epothilone-Based Microtubule Stabilizing Agents

  • Lee, Sangbae;Lee, Yuno;Briggs, James M.;Lee, Keun Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1972-1984
    • /
    • 2013
  • Microtubules play an important role in intracellular transport, mobility, and particularly mitosis. Paclitaxel (Taxol$^{TM}$) and paclitaxel-like compounds have been shown to be anti-tumor agents useful for various human tumors. Paclitaxel-like compounds operate by stabilizing microtubules through interface binding at the interface between two ${\beta}$-tubulin monomers in adjacent protofilaments. In this paper we present the elucidation of the structural features of paclitaxel and paclitaxel-like compounds (e.g., epothilones) with microtubule stabilizing activities, and relate their activities to spatial and chemical features of the molecules. CATALYST program was used to generate three-dimensional quantitative structure activity relationships (3D-QSARs) resulting in 3D pharmacophore models of epothilone- and paclitaxel-derivatives. Pharmacophore models were generated from diverse conformers of these compounds resulting in a high correlation between experimental and predicted biological activities (r = 0.83 and 0.91 for epothilone and paclitaxel derivatives, respectively). On the basis of biological activities of the training sets, five- and four-feature pharmacophore hypotheses were generated in the epothilone and paclitaxel series. The validation of generated hypotheses was achieved by using twelve epothilones and ten paclitaxels, respectively, which are not in the training sets. The clustering (grouping) and merging techniques were used in order to supplement spatial restrictions of each of hypothesis and to develop more comprehensive models. This approach may be of use in developing novel inhibitor candidates as well as contributing a better understanding of structural characters of many compounds useful as anticancer agents targeting microtubules.