• Title/Summary/Keyword: Notched impact strength

Search Result 28, Processing Time 0.022 seconds

Mechanical Properties of Paper Sludge-Polypropylene Composites (제지 슬러지-폴리프로필렌수지 복합재의 기계적 성질)

  • Lee, Phil-Woo;Son, Jung-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.51-62
    • /
    • 1999
  • The objective of this research is to develop paper sludge reinforced thermoplastic composites which incorporate the advantages of each component materials. The effects of paper sludge content(0, 10, 20, 30, 40----), mesh size(20~40, 60~80, less than 100mesh), and coupling agent(Epolene E-43 and Epolene G-3003) on the mechanical properties of paper sludge-polypropylene composites were investigated. Composite density increased with an increase in the paper sludge content. When paper sludge is incorporated into a polypropylene matrix, the flexural properties of the composite increase significantly with an increase in the paper sludge mixing ratio. Especially, flexural modulus was improved with increasing paper sludge content. The flexural strength of composites was improved, but flexural modulus reduced somewhat with decreasing paper sludge particle size. The flexural properties of paper sludge-polypropylene composites were improved by using coupling agents to enhance the bonding between reinforcing filler and matrix. Use of the epolene E-43 and G-3003 resulted in considerable improvement in the flexural strength over control specimens. The flexural strength of the G-3003 composite system is higher than that of the E-43 system. Generally, izod notched impact strength of paper sludge-polypropylene composite decreased slightly, whereas izod unnotched impact strength decreased significantly with increasing paper sludge contents. There was no effects of paper sludge particle size on impact strength of paper sludge-polypropylene composites. And izod unnotched impact strength of epolene E-43 composite system sharply decreased but that of G-3003 composite system was no tendency with increasing additive content.

  • PDF

Morphology and Impact Strength of High Density Polyethylene/Polyamide Alloy (HDPE/PA 알로이의 모포로지와 충격강도)

  • Lee, Yong-Moo;Kang, Doo-Whan
    • Elastomers and Composites
    • /
    • v.28 no.4
    • /
    • pp.283-292
    • /
    • 1993
  • The morphology and impact strength of alloys of high density polyethylene(HDPE) and nylon-6(PA) with modified $ethylene-{\alpha}-olefin$ copolymer(OCP) as compatibilizer and impact modifier were measured by the scanning electron microscope(SEM) and the notched Izod impact test(and the high rate impact test), respectively. HDPE is incompatible with PA and specimens obtained from simple mechanical mixing show the inferior properties. However, it was indicated that OCP played roles of not only impact modifier but also compatibilizer. High rate impact test results were different from those of the notched Izod impact test, but in both tests OCP was effective for HDPE/PA blends. From SEM observation, the size of the dispersed phase in alloys prepared with OCP is much smaller than that of alloys without OCP and the interfacial adhesion of alloys prepared with OCP is also better. Toughening mechanism of polymer blends was discussed by combining the morphology analysis with mechanical and thermal properties.

  • PDF

Relationships between Morphologies and Properties of PA 6,6/EPM/EPM-g-MA Blends (PA 6,6/EPM/EPM-g-MA 블렌드물의 특성과 Morphology 관계)

  • Lee, Yoong;Lee, Chang-Woo;Chang, Yoon-Ho;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.682-689
    • /
    • 1999
  • In this study, binary PA 6,6/EPM(or EPM-g-MA) blends and ternary PA 6,6/EPM/EPM-g-MA blends were fabricated according to the variation in elastomer content and composition ratio of blend, and mixing temperature and rate so as to investigate the degree of influence of elastomer content and average particle size, morphology, and distribution of dispersed elastomer on properties of blends. As results, under the constant mixing rate(250 rpm) and different five section temperature profiles(270-265-265-255-$255^{\circ}C$) in extruder, high notched Izod impact strength was the property of PA 6,6/EPM-g-MA(70/30) blend among binary blends. Notched Izod impact strength of this blend was 25 times improvement compared with that of polyamide 6,6. In addition, elastomer average particle size of ternary PA 6,6/EPM/EPM-g-MA(70/15/15) blend was $0.56{\mu}m$, which was fine distribution, and notched Izod impact strength of that blend was the highest of all blends prepared with the variation in elastomer content. But the properties of this ternary blend were decreased remarkably at the diverse mixing temperatures and mixing rates.

  • PDF

A Study on the Variations of Impact Strength of Plastics for Various Thicknesses and Notch Formation (두께와 노치생성방법에 따른 플라스틱 수지의 충격강도 변화에 관한 연구)

  • Kim, Hyun;Lee, Dae-Seop;Lim, Jae-Soo;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • The impact strength of material is considered the most important design factor for small and light products. Impact strength is a unique material property, thus the impact strength should not depend upon the geometry of specimen. However it varies according to specimen thickness, notching method, and notch shape. In this study, the variations of impact strength have been investigated according to thickness, notch shape, and notching method of specimen. Engineering plastics such as PC, ABS and POM have been used in this study. Experimental results showed impact strength increased as thickness decreasesd. PC showed the highest increment of impact strength when the thickness was thin. Fractured section of PC showed brittle fracture behavior when the specimen was thick. However it showed ductile fracture behavior when it was thin. The impact strength of in-mold notched specimen showed higher than that of milling notched specimen. PC showed the highest notch sensitivity among the materials used in this experiment.

Properties of PA 6,6/Elastomer Blends with Various Elastomer Content (탄성중합체 함유량 변화에 따른 폴리아미드-6,6/탄성중합체 블랜드물의 특성)

  • Lee, Yoong;Lee, Chang-Woo;Cho, Yoon-Ho;Hahm, Yeong-Min
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.20-30
    • /
    • 1999
  • In this study, binary polyamide 6,6(PA 6,6)/ethylene-propylene rubber(EPM) or EPM-g-maleic anhydride(EPM-g-MA) blends and ternary PA 6,6/EPM/EPM-g-MA blends with various elastomer content were prepared in order to investigate the degree of influence of elastomer content and average particle size, morphology, and distribution of dispersed elastomer on mechanical and thermal properties of blends. According to the results, notched Izod impact strength and relative crystallinity of binary blends modified with EPM-g-MA as well as average particle size and distribution of dispersed elastomer in such blends were more improved than those of binary blends modified with EPM. Notched Izod impact strength of blend whose composition ratio(wt % ) was 70:30(PA 6,6 : EPM-g-MA) was the highest among the binary PA 6,6/EPM-g-MA blends. The impact strength was increased by 25 times and its relative crystallinity was increased by 7 times when compared with those of polyamide 6,6. In the case of ternary PA 6,6/EPM/EPM-g-MA blend of which composition ratio was 70:15:15(PA 6,6:EPM:EPM-g-MA), the elastomer was finely distributed with the average particle size of $0.56{\mu}m$. The Izod impact strength of this blend was the highest of all blends prepared with different elastomer content.

  • PDF

Impact Characteristics and Morphology of Nylon 6/Polypropylene Blends (Nylon 6/Polypropylene 블렌드의 충격특성 및 모폴로지)

  • Kim, Jong-Guk;Yun, Ju-Ho;Go, Jae-Song;Choe, Hyeong-Gi;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.10-15
    • /
    • 2002
  • Melt blends of maleic anhydride grafted polypropylerle(PP-g-MA) and Nylon 6 were prepared to study the influence of chemical reaction between the two polymer components. By adding the MA grafted polystyrene pold (ethylene/butadiene) and polystyrene[SEBS-g-MA] as the compatible modifiers to reinforce the impact resistance, the Izod impact strength, high rate impact strength and morphology were studied. The notched Izod impact strength increased with the content of PP-g-MA and SEBS- g-MA. The energy of high rate impact strength increased as the thickness of specimen increased, while, it increased as the specimen displacement decreased. In the morphology observed by SEM, finally, we confirmed the improvement of the compatibilization and interfacial adhesion with the content of SEBS-g-MA. The continuous phase of PP-g-MA was the main cause of the modified properties.

A study on the Determination of Fractuye Parameters for Rubber Toughened Polymeric Materials Using Instrumented Charpy Impact Test (샤피충격시험기를 이용한 고무보강 폴리머재료의 파괴인자 결정에 관한연구)

  • Choi, Young-Sic;Park, Myung-Kyun;Bahk, S.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.389-394
    • /
    • 2001
  • The notched Charpy and Izod impact tests arc the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF

Fracture Behaviour of Lubricants in ABS Terpolymer (ABS 중에 첨가된 저분자 화합물의 파단 거동에 미치는 영향)

  • Don, Yoon-Seung;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.878-888
    • /
    • 1994
  • In order to investigate the fracture behavior of ABS terpolymer under the tension and impact load, varing the content of rubber, molecular weight of SAN, content and kinds of lubricant, tension speed, the mechanical properties were measured and SEM pictures of fracture area were taken. Under the tension, the tensile strength increased as rubber content and lubricant content decreased, while molecular weight and tension speed increased. The deformation of area near fracture site did not occur as rubber content, tension speed and molecular weight decreased and liquid lubricant was used. And in the shape of fracture seemed phase seperation. Under the impact load, the notched izod impact strength increased as rubber content, molecular weight, ambient temperature and lubricant content increased. In the SEM picture, the strength was high white the fracture surface was small.

  • PDF

Influence of Hwangto on the Mechanical Properties of Wood Flour Reinforced High Density Polyethylene (HDPE) Composites

  • Lee, Sun-Young;Doh, Geum-Hyun;Kang, In-Aeh;Wu, Qinglin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.69-78
    • /
    • 2007
  • The mechanical properties of wood flour, Hwangto (325 and 1,400 mesh per 25,4 mm) and coupling agent-reinforced HDPE composites were investigated in this study. Hwangto and maleated polyethylene (MAPE) were used as an inorganic filler and a coupling agent, respectively. The addition of Hwangto and MAPE to virgin HDPE also increased the Young's modulus in the smaller degree. The addition of wood flour and Hwangto to virgin HDPE increased the tensile strength, due to the high uniform dispersion of HDPE by high surface area of Hwangto in HDPE and wood flour. MAPE also significantly increased the tensile strength. When wood flour was added, there was no notable difference on the tensile properties, in terms of Hwangto particle size. Hwangto also improved the flexural modulus and strength of reinforced HDPE composites. With different particle sizes of Hwangto, there was no considerable difference in flexural modulus and strength of reinforced HDPE composites. The addition of Hwangto showed slightly lower impact strength than that of wood flour. However, the particle size of Hwangto showed no significant effect on the impact strength of reinforced composites. In conclusion, reinforced HDPE composites with organic and inorganic fillers provide highly improved mechanical properties over virgin HDPE.

Microstructures and Impact Properties of 500mm Single Pass Electrogas Weldment for EH36 TMCP steels (EH36 TMCP강의 50mm 1 패스 일렉트로가스 용접부의 조직 및 충격특성)

  • 이해우;고대은
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.96-101
    • /
    • 1999
  • Microstructures and mechanical properties of weldments were studied for EH36 TMCP higher-strength hull steel with electrogas welding jprocess. In case of a newly designed EH36 TMCP steel for large heat input welding process, the Microstructures of HAZ shows more narrow width of grain coarsed region than that of conventional EH36 TMCP weldments, the amount of acicular ferrite, which is beneficial to impact toughness, increased while the amount of grain-boundary ferrite decreased. Charpy V-notched impact tests show that a newly designed EH36 TMCP steel weldment satisfies all the requirement of specifications, especially at the fusion line +2mm where the conventional EH36 TMCP steel fails to exceed the requirement.

  • PDF