• 제목/요약/키워드: Notched Strength

검색결과 134건 처리시간 0.025초

Nylon 6/Polypropylene 블렌드의 충격특성 및 모폴로지 (Impact Characteristics and Morphology of Nylon 6/Polypropylene Blends)

  • 김종국;윤주호;고재송;최형기;김상욱
    • 한국재료학회지
    • /
    • 제12권1호
    • /
    • pp.10-15
    • /
    • 2002
  • Melt blends of maleic anhydride grafted polypropylerle(PP-g-MA) and Nylon 6 were prepared to study the influence of chemical reaction between the two polymer components. By adding the MA grafted polystyrene pold (ethylene/butadiene) and polystyrene[SEBS-g-MA] as the compatible modifiers to reinforce the impact resistance, the Izod impact strength, high rate impact strength and morphology were studied. The notched Izod impact strength increased with the content of PP-g-MA and SEBS- g-MA. The energy of high rate impact strength increased as the thickness of specimen increased, while, it increased as the specimen displacement decreased. In the morphology observed by SEM, finally, we confirmed the improvement of the compatibilization and interfacial adhesion with the content of SEBS-g-MA. The continuous phase of PP-g-MA was the main cause of the modified properties.

유한요소법과 초음파 메카트로닉스 시스템에 의한 강도적 불균질 이음부의 노치위치에 따른 균열발생 한계 조건 (Evaluation of Notch Location Effect on Ductile Crack Initiation at Strength Mismatched Joints by Finite Element Method and Ultrasonic-Mechatronics System)

  • 안규백;방한서;풍전정남
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.87-92
    • /
    • 2005
  • It has been well hewn that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using a two-parameters criterion based on equivalent plastic strain and stress triaxiality. The present study focuses on the effects of strength mismatch, which can elevate plastic constraint due to heterogeneous plastic straining, on the critical condition for ductile fracture initiation usinga two-parameter criterion. Fracture initiation testing has been conducted under static loading using notched round bar specimens which had different notch locations. This study provides the fundamental clarification of the effect of strength mismatching and effect of notch location on the critical condition to ductile crack initiation from notch root using fuite element method and ultrasonic-mechatronics system. The critical condition of ductile crack initiation from notch root of strength mismatched tensile specimens under static loading appeared to be almost the same as those of homogeneous tensile specimens with circumferential sharp notch specimen. Also, the effect of notch location in mismatched specimens was estimated using finite element(FE) analyses.

Effect of medium coarse aggregate on fracture properties of ultra high strength concrete

  • Karthick, B.;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.103-114
    • /
    • 2021
  • Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm - 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load - deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.

원공을 가지는 복합재 적층판의 인장강도 예측 기법 (A Method to Predict the Open-Hole Tensile Strength of Composite Laminate)

  • 이흔주;신인수;정문규;권진회;최진호
    • Composites Research
    • /
    • 제24권4호
    • /
    • pp.29-35
    • /
    • 2011
  • 전통적인 특성길이 방법을 이용하여 원공이 있는 복합재 적층판의 강도를 예측하기 위해서는 원공이 있는 적층뿐만 아니라 원공이 없는 적층판에 대한 시험 결과와 유한요소해석이 필요하였다. 본 논문에서는 응력집중계수와 재료상수를 이용하여 유한요소해석 없이 복합재 적층판 원공 주위의 응력분포 및 인장특성길이를 추정하고, 이를 바탕으로 원공이 있는 복합재 적층판의 인장강도를 예측할 수 있는 방법을 제안하였다. 또한 새로운 방법에서는 재료의 효과가 변수로 고려되므로 다양한 재료에 대한 적용이 가능하며 원공이 있는 복합재 적층판에 대한 시험도 생략할 수 있다. 적층판 주위의 응력분포는 유한요소해석과의 비교를 통해 검증하였고, 최종적으로는 USN125 탄소/에폭시 적층판을 제작하여 파손하중 예측 결과와 시험 결과를 비교하였다. 원공이 있는 다양한 형상의 복합재 적층판의 파손강도 예측 결과는 최대 8% 이내의 오차로 시험 결과와 잘 일치함을 확인하였다.

國산 異種鋼을 摩擦壓接한 경우의 疲勞擧動 (Fatigue Behavior of Friction Welded Material of Domestic Dissimilar Steels - In Case of SM 45C to SUS304 Friction Welded Steel -)

  • 송삼홍;박명과
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.953-962
    • /
    • 1987
  • 본 연구에서는 국산 구조용강의 SM 45C 와 SUS 304 재를 최고 강도치가 나타 나는 압접조건하에서 압접하여 우재료의 용착금속부, 열영향부, 각 모재부 소정의 장 소에 미소원공을 가공한 시험편을 토대로 피로크랙의 발생 및 전파거동을 응력 레벨의 고저를 고려하여 고찰하였다.

Multi-Scale finite element investigations into the flexural behavior of lightweight concrete beams partially reinforced with steel fiber

  • Esmaeili, Jamshid;Ghaffarinia, Mahdi
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.393-405
    • /
    • 2022
  • Lightweight concrete is a superior material due to its light weight and high strength. There however remain significant lacunae in engineering knowledge with regards to shear failure of lightweight fiber reinforced concrete beams. The main aim of the present study is to investigate the optimum usage of steel fibers in lightweight fiber reinforced concrete (LWFRC). Multi-scale finite element model calibrated with experimental results is developed to study the effect of steel fibers on the mechanical properties of LWFRC beams. To decrease the amount of steel fibers, it is preferred to reinforce only the middle section of the LWFRC beams, where the flexural stresses are higher. For numerical simulation, a multi-scale finite element model was developed. The cement matrix was modeled as homogeneous and uniform material and both steel fibers and lightweight coarse aggregates were randomly distributed within the matrix. Considering more realistic assumptions, the bonding between fibers and cement matrix was considered with the Cohesive Zone Model (CZM) and its parameters were determined using the model update method. Furthermore, conformity of Load-Crack Mouth Opening Displacement (CMOD) curves obtained from numerical modeling and experimental test results of notched beams under center-point loading tests were investigated. Validating the finite element model results with experimental tests, the effects of fibers' volume fraction, and the length of the reinforced middle section, on flexural and residual strengths of LWFRC, were studied. Results indicate that using steel fibers in a specified length of the concrete beam with high flexural stresses, and considerable savings can be achieved in using steel fibers. Reducing the length of the reinforced middle section from 50 to 30 cm in specimens containing 10 kg/m3 of steel fibers, resulting in a considerable decrease of the used steel fibers by four times, whereas only a 7% reduction in bearing capacity was observed. Therefore, determining an appropriate length of the reinforced middle section is an essential parameter in reducing fibers, usage leading to more affordable construction costs.

Mechanical Properties of Corn Husk Flour/PP Bio-composites

  • Jagadeesh, Dani.;Sudhakara, P.;Lee, D.W.;Kim, H.S.;Kim, B.S.;Song, J.I.
    • Composites Research
    • /
    • 제26권4호
    • /
    • pp.213-217
    • /
    • 2013
  • The focus in the present work is to study the agro-waste corn husk bio-filler as reinforcement for polypropylene. These materials have been created by extrusion and injection molding. The effect of filler content by 10, 20, 30 and 40 wt. % and mesh sizes of 50~100, 100 and 300 on the mechanical properties was studied. For the un-notched specimens, the results of flexural strength showed a declining trend with increase the filler loading and the results of impact strength showed an increasing trend with increase the mesh size. In contrast, enhanced flexural modulus was observed with increasing filler loading and size.

3점 휨시험에의한 저발열콘크리트의 파괴거동에 곤한 실험적 연구 (Experimental Study on Fracture Behavior of Low-Heat Concrete, by Three-Point Bent Test)

  • 조병완;박승국
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.199-204
    • /
    • 1998
  • To analysis the failure character of Low-Heat concrete which is used to prevent the thermal crack caused by hydration heat, static loading test was performed by this test method, "Determination of the Fracture Energy of Motar and Concrete by Means of Three-Point Band Tests on Notched Beam" (suggested by RILEM 50-FMC Committe). This study compared and analysised the fracture energy of Mode I (opening mode), the most general pattern in the view of water-cemente ratio(W/C), compressive strength and age of Ordinary Portland Concrete and Low-Heat Concrete under the same mixture. The test results show that the case of Ordinary Portland Concrete and Low-Heat Concrete, low Water-Cemente ratio(W/C) cause the increase of fracture energy, and high failure-strength decrease failure-deflection, and the fracture energy of Low-Heat Concrete is similar to Ordinary Portland Concrete as the age increase. increase.

  • PDF

금속기 복합재료의 피로강도 평가에 관한 연구 (A Study on the Fatigue Strength Evaluation of Metal Matrix Composite)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권2호
    • /
    • pp.41-53
    • /
    • 1994
  • In this paper, rotating-bending fatigue tests of the SiC-whisker- reinforced 6061-T6 aluminum alloy and 6061-T6 alumiunm alloy made by power metallurgy were carried out to investigate the fatigue characteristics of plain and notched specimens at room temperature. The fatigue mechnisms in both materials were clarified through successive surface observations using the plastic replica method. In the case of the SiC-whisker-reinforced composites, there are whisker rich and poor zones and the fatigue crack is nucleated from the end of whiskers near the boundary. On the other hand, in the case of the 6061-T6 aluminum alloy, the fatigue crack is nucleated from defects and propagates by shear. Moreover, the results were discussed based on linear notch mechanics.

  • PDF

Numerical simulation of material damage for structural steels S235JR and S355J2G3

  • Kossakowski, Pawel G.;Wcislik, Wiktor
    • Advances in Computational Design
    • /
    • 제3권2호
    • /
    • pp.133-146
    • /
    • 2018
  • The paper discusses numerical analysis of tensile notched specimens with the use of Gurson - Tvergaard - Needleman (GTN) material model. The analysis concerned S235JR and S355J2G3 steel grades, subjected to medium stress state triaxiality ratio, amounting 0.739. A complete procedure for FEM model preparation was described, paying special attention to the issue of determining material constants in the GTN model. An example of critical void volume fraction ($f_c$) experimental determination procedure was presented. Finally, the results of numerical analyses were discussed, indicating the differences between steel grades under investigation.