• Title/Summary/Keyword: Notch Root Radius

Search Result 15, Processing Time 0.019 seconds

Fatigue Life Evaluation of Notched Shaft Using Local Strain Approach (국부변형률방법을 이용한 노치를 지닌 축의 피로수명평가)

  • 고승기;김영일;이학주;김완두;이상록
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.80-89
    • /
    • 1996
  • Fatigue life of a notched shaft was evaluated in order to estimate the durability and integrity of the notched shaft in design stage. Cumulative fatigue dama- ge analysis was performed using local strain approach based on the assumption that the fatigue life of a notched component is approximately same as that of a smooth specimen is subjected to the same strain at the notched component. In this paper, shafts with different notch root radius of 1, 2㎜ resulting in different values of stress concentration factors were tested under||rotating bending fatigue loading condition. Theoretical stress concentration factor for each notch type was calculated using finite element method. Fatigue life prediction program, FALIPS, written in C language was developed using the strain-life curve, and the local strain approach integrating Neuber's rule, cyclic stress-strain, and hysteresis loop equations. The fatigue life evaluated using the fatigue notch factor obtained from the experimentally determined fatigue strength showed very large scattering with nonconservatism, but the fatigue notch factors derived from the stress concentration factors and Peterson's equation reduced the considerablely accurate fatigue life evaluation within a factor of three.

  • PDF

Experimental Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 1) - (동적하중 하에서의 강도적 불균질재의 연성크랙 발생거동의 실험적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제1보) -)

  • ;Mitsuru Ohata;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.575-581
    • /
    • 2003
  • It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on ductile crack initiation behavior. Also, the ductile crack initiation testing were conducted under static and dynamic loading using round bar specimens with circumferential notch and strength mis-matching. The result showed that the nominal strain at ductile crack initiation of circumferential notch specimens small then the round bar specimens for effect of geometrical discontinuity. Also, the nominal strain at ductile crack initiation was decreased with decrease of notch root radius of curvature.

The Research of the Strain Measuement Method on the Stress Concentration Area using 3D-ESPI System (3D-ESPI System을 이용한 응력집중부의 변형률 측정기법 연구)

  • 김경수;심천식;전종욱;김덕호
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.150-153
    • /
    • 2001
  • In this paper, the tensile test of three kinds of the specimens was performed. Type I specimen is without notch and type II, III specimens have a radius of semi-circular edge crack of 2.5mm, 4.0mm. The tensile load(20kN and 30kN) was applied to the specimen by Universal Testing Machine. 3D-ESPI system and strain gauge measured simultaneously the strain in the center of the specimen and near the edge crack. The test results were compared with each other. Moreover, the stress concentration factor based on geometric information was calculated to confirm the accuracy of the strain measured by 3D-ESPI system. The calculated strain was compared with the measured one by 3D-ESPI system. As a result, it was confirmed that 3D-ESPI system measured the right strain near the semi-circular edge crack of the specimens.

  • PDF

Three-Dimensional Virtual Crack Closure Technique Based on Anisoparametric Model for Stress Intensity Factors of Patch Repaired Plates with Cracks at Notches (접착 보강된 노치 균열판의 응력확대계수 산정을 위한 비등매개변수 모델 기반의 3차원 가상균열닫힘법)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.39-48
    • /
    • 2012
  • This study deals with numerical determination of stress intensity factors of adhesively patch-repaired plates with cracks at V-shaped or semicircular notches. The p-convergent anisoparametric model are considered and then three-dimensional virtual crack closure technique is presented using formulations of anisoparametric elements. In assumed displacement fields of an element, strain-displacement relations and three-dimensional constitutive equations are derived with three-dimensional hierarchical shape functions expanded from one-dimensional Lobatto functions. Transfinite mapping technique is used to represent a circular boundary. The present model provides accuracy and simplicity in terms of stress concentration factor, stress distribution, the number of degrees of freedom, and non-dimensional stress intensity factor as compared with previous works in literatures. Stress intensity factors obtained by the three-dimensional virtual crack closure technique are estimated with respect to the variation of width of finite plate, radius of notch root, angular inclination of V-shaped notch, and crack length.

The Effect of Specimen Size in Charpy Impact Testing (샬피 충격시험에 있어서 시험편 크기의 영향)

  • Kim, Hoon;Kim, Joo-Hark;Chi, Se-Hwan;Hong, Jun-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 1997
  • Charpy V-notch impact tests were performed on the full-, half-and third-size specimens from two ferritic SA 508 Cl. 3 steels for nuclear pressure vessel. New normalization factors were proposed to predict the upper shelf energy(USE) and the ductile-brittle transition temperature(DBTT) of full-size specimens from the measured data on sub-size specimens. The factors for the USE and the DBTT are $(Bb^2/Kt); and; (Bb/R)^1/2/, $ respectively, where B the width, b the ligament size, $K_{t}$ the elastic stress concentration factor, and R the notch root radius. These correlations successfully estimated the USE and DBTT of the full-size specimens based on sub-size specimen data. In addition, the size effects were studied to develop the correlations among absorbed energy, lateral expansion(LE) and displacement. It was also found that the LE was able to be estimated from the displacement obtained by the instrumented impact test, and that the displacement would be used as a criterion for the toughness of the steels corresponding to change in their yield strength.h.