• Title/Summary/Keyword: Notch Depth

Search Result 112, Processing Time 0.022 seconds

Optimal Design of Fluid Mount Using Artificial Life Algorithm (인공생명을 이용한 유체마운트의 최적화)

  • 안영공;송진대;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.427-432
    • /
    • 2001
  • This paper shows the optimum design of the fluid engine mount. The design has been modified by trial and error because there is many design parameters that can be varied in order to obtain resonant and notch frequencies, and notch depth. It seems to be a great application for optimal design for the mount. Many combinations of parameters are possible to give us the desired resonant and notch frequencies, but the question is which combination provides the lowest resonant peak and notch depth\ulcorner In this study, the enhanced artificial life algorithm is applied to get the desired notch frequency of a fluid mount and minimize transmissibility at the notch frequency. The present hybrid algorithm is the synthesis of an artificial life algorithm with the random tabu (R-tabu) search method. The hybrid algorithm has some advantages, which is not only faster than the conventional artificial life algorithm, but also gives a more accurate solution. In addition, this algorithm can find all global optimum solutions. The results show that the performance of a conventional engine mount can be improved significantly compared with the optimized mount.

  • PDF

Optimization of Engine Mount Using an Enhanced Genetic Algorithm (향상된 유전알고리듬을 이용한 유체마운트의 최적화)

  • Ahn, Young-Kong;Kim, Young-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.935-942
    • /
    • 2002
  • When designing fluid mounts, design parameters can be varied in order to obtain a desired notch frequency and notch depth. The notch frequency is a function of the mount parameters and is typically selected by the designer to occur at the vibration disturbance frequency. Since the process of choosing these parameters can involve some trial and error, it seems to be a great application for obtaining optimal performance of the mount. Many combinations of parameters are possible to give us the desired notch frequency, but the question is which combination provides the lowest depth. Therefore. an automatic optimal technique is needed to optimize the performance of the fluid mount. In this study. the enhanced genetic algorithm (EGA) is applied to minimizing transmissibility of a fluid mount at the desired notch frequency, and at the notch and resonant frequencies. The EGA is modified genetic algorithm to search global and local optimal solutions of multi-modal function optimization. Furthermore. to reduce the searching time as compare to conventional genetic algorithm and Increase the precision of the solutions, the modified simplex method is combined with the algorithm. The results show that the performance of the optimized mount by using the hybrid algorithm is better than that of the conventional fluid mount.

Numerical simulation of wedge splitting test method for evaluating fracture behaviour of self compacting concrete

  • Raja Rajeshwari B.;Sivakumar, M.V.N.;Sai Asrith P.
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.265-273
    • /
    • 2024
  • Predicting fracture properties requires an understanding of structural failure behaviour in relation to specimen type, dimension, and notch length. Facture properties are evaluated using various testing methods, wedge splitting test being one of them. The wedge splitting test was numerically modelled three dimensionally using the finite element method on self compacting concrete specimens with varied specimen and notch depths in the current work. The load - Crack mouth opening displacement curves and the angle of rotation with respect to notch opening till failure are used to assess the fracture properties. Furthermore, based on the simulation results, failure curve was built to forecast the fracture behaviour of self-compacting concrete. The fracture failure curve revealed that the failure was quasi-brittle in character, conforming to non-linear elastic properties for all specimen depth and notch depth combinations.

Interpretation of Stress Crack Resistance of Damaged Geomembranes (손상된 지오멤브레인의 응력균열 저항성 해석)

  • Jeon, Han-Yong;Kahn, Belas Ahmed;Jang, Yeon-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.305-313
    • /
    • 2010
  • HDPE smooth and textured GMs were cut into dumbbell shape and notched where depth of the notch produced a ligament thickness of 90% to 10% of the nominal thickness of the specimen at 10% interval. Yield stress and elongation were measured of those samples and plotted on Graph. Yield stress and elongation at yield point decreases gradually as the notch depth is increased. Both installations damaged and notched GMs were used to understand stress crack behavior. Intact sample were notched in such a manner that the depth of notch produced a ligament thickness of 80% of the nominal thickness of the specimen. Installation damaged samples were not notched. Stress Crack Resistance behavior was observed using NCTL Test at $50{\pm}1^{\circ}C$ at different yield stresses immerging with pH 4 and pH 12 buffer solutions. Significant difference was observed in both cases.

  • PDF

Disturbance countermeasurement of depth control system using adaptive notch filter (적응노치필터를 이용한 심도제어시스템 외란처리)

  • 김윤호;윤형식;임재환;이석필;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.86-89
    • /
    • 1992
  • One of the most difficult problems in depth control for underwater vehicle is the effect of seaway disturbance. One component of the seaway forces is of large magnitude with a relatively narrow-band, first order component. The other component is generaly of somewhat smaller magnitude, second order component. Since the magnitude of the first order component is generally much greater than the compensating force that can be generating by the planes, it is undesirable for the controller to generate a control command. In this paper, we disigned adaptive notch filtering system using filter bank structure. Energies of each band-passed signal are obtained by MA(Moving Average) method and compared to produce center frequency. By adapting this parameter to notch filter, 1st order seaway disturbance can be removed, which lead to the improvement of automatic depth control system.

  • PDF

Prediction of Fracture Energy of Concrete

  • Oh, Byung-Hwan;Jang, Seung-Yup;Byun, Hyung-Kyun
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.211-221
    • /
    • 1999
  • A method to determine the fracture energy of concrete is investigated. The fracture energy may be calculated from the area under the complete load-deflection curve which can be obtained from a stable three-point bend test. Several series of concrete beams have been tested. The Present experimental study indicates that the fracture energy decreases as the initial notch-to-beam depth ratio increases Some problems to be observed to employ the three-point bend method are discussed. The appropriate ratio of initial notch-to-beam depth to determine the fracture energy of concrete is found to be 0.5. It is also found that the influence of the self-weight of a beam to the fracture energy is very small A simple and accurate formula to predict the fracture energy of concrete is proposed.

  • PDF

Analysis of notch depth and loading rate effects on crack growth in concrete by FE and DIC

  • Zhu, Xiangyi;Chen, Xudong;Lu, Jun;Fan, Xiangqian
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.527-539
    • /
    • 2019
  • In this paper, the fracture characteristics of concrete specimens with different notch depths under three-point flexural loads are studied by finite element and fracture mechanics methods. Firstly, the concrete beams (the size is 700×100×150 mm) with different notch depths (a=30 mm, 45 mm, 60 mm and 75 mm respectively) are tested to study the influence of notch depths on the mechanical properties of concrete. Subsequently, the concrete beams with notch depth of 60 mm are loaded at different loading rates to study the influence of loading rates on the fracture characteristics, and digital image correlation (DIC) is used to monitor the strain nephogram at different loading rates. The test results show that the flexural characteristics of the beams are influenced by notch depths, and the bearing capacity and ductility of the concrete decrease with the increase of notch depths. Moreover, the peak load of concrete beam gradually increases with the increase of loading rate. Then, the fracture energy of the beams is accurately calculated by tail-modeling method and the bilinear softening constitutive model of fracture behavior is determined by using the modified fracture energy. Finally, the bilinear softening constitutive function is embedded into the finite element (FE) model for numerical simulation. Through the comparison of the test results and finite element analysis, the bilinear softening model determined by the tail-modeling method can be used to predict the fracture behavior of concrete beams under different notch depths and loading rates.

A STUDY OiM THE MORPHOLOGY OF CHIN IN RELATION TO VERTICAL DYSPLASIA OF CRANIOFACIAL COMPLEX (안모수직 부조화에 따른 하악이부 형태에 관한 연구)

  • Cha, Bong-Keun;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.20 no.1
    • /
    • pp.135-156
    • /
    • 1990
  • This study was undertaken to investigate the difference of chin morphology and mandibular form in relation to different mandibular growth direction. The subject was divided into three group i.e., control group, vertical group, and horizontal group, according to the criteria of $Bj{\ddot{o}}rk$ sum, and each group was composed of 15 females and 15 males. Medial axis analysis in addition to the routine cephalometric analysis using P.I.A.S. (personal image analysing system) was carried out to find out the differences of mandibular morphology on each group. The results were as follows: 1. The area of symphysis was larger in horizontal growth group than that of vertical growth group. 2. Protruding chin area was also larger in horizontal growth group than that of vertical growth group. 3. There was a close correlationship between protruding chin area and other form of mandible. 4. Antegonial notch depth and ramus posterior contour depth was deeper in vertical growth group than in horizontal growth group, and antegonial notch depth was more influenced by anterior part of notch than posterior part of notch. 5. Mental medial axis and incisal medial axis length, in relation to corpus medial axis length was larger in vertical growth group than in horizontal growth group.

  • PDF

Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending

  • Lee, Kuo-Long;Chang, Kao-Hua;Pan, Wen-Fung
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.387-404
    • /
    • 2016
  • In this paper, the response and failure of sharp-notched 6061-T6 aluminum alloy circular tubes with five different notch depths of 0.4, 0.8, 1.2, 1.6 and 2.0 mm subjected to cyclic bending were experimentally and theoretically investigated. The experimental moment-curvature relationship exhibits an almost steady loop from the beginning of the first cycle. And, the notch depth has almost no influence on its relationship. However, the ovalization-curvature relationship exhibits a symmetrical, increasing, and ratcheting behavior as the number of cycles increases. In addition, a higher notch depth of a tube leads to a more severe unsymmetrical trend of the ovalization-curvature relationship. Focusing on the aforementioned relationships, the finite element software ANSYS was used to continue the related theoretical simulation. Furthermore, the five groups of tubes tested have different notch depths, from which five unparallel straight lines can be observed from the relationship between the controlled curvature and the number of cycles required to produce failure in the log-log scale. Finally, a failure model was proposed to simulate the aforementioned relationship. Through comparison with the experimental data, the proposed model can properly simulate the experimental data.

A study of dynamic behavior with effect of notch shape on high impact (고속충격하의 노치형상에 따른 동적거동연구)

  • 장영환;박성도;윤희석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.795-798
    • /
    • 1997
  • This study is about the dynamic behavior of steel(SM45C). Dynamic tests were performed using SHPB(Split Hopkinson Pressure Bar) which is designed and modified to be used in both tensile and compressive modes. Quasi-static compression tests were also carried out for the comparison to the dynamic results. Not only the dynamic mechanical properties but also the effect of the notch of the specimen on stress-strain curve were investigated. The dynamic test results reveal that strain and stress are sensitively affected by the notch. The depth and the number of notch increase the stress and decrease the strain.

  • PDF