• 제목/요약/키워드: Nostocales

검색결과 10건 처리시간 0.023초

Genetic Diversity and Molecular Phylogeny of Cyanobacteria from Sri Lanka Based on 16S rRNA Gene

  • Wanigatunge, R.P.;Magana-Arachchi, D.N.;Chandrasekharan, N.V.;Kulasooriya, S.A.
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.317-329
    • /
    • 2014
  • The diversity of cyanobacteria in Sri Lanka was studied in different water reservoirs, paddy fields, brackish water and tsunami affected areas using light microcopy, 16S rRNA sequences, followed by phylogenetic analysis. Based on light microscopy, 24 genera were identified from environmental samples belonging to the orders Chroococcales, Oscillatoriales, Pleurocapsales and Nostocales. In cultures, 33 genera were identified from all five cyanobacterial orders, including Stigonematales. Based on 16S rRNA gene sequences and their morphology, two isolates were identified up to species level, 72 to genus level, one isolate up to family and 11 up to order level. Twelve isolates couldn't be assigned to any taxonomic level. The results of 16S rRNA gene sequences along with the phylogenetic analysis indicated that some cyanobacterial isolates could be accommodated to genus or order level. The 16S rRNA sequence analysis data in this study confirmed that order Nostocales and order Pleurocapsales cyanobacteria are monophyletic while orders Chroococcales, Oscillatoriales and Stigonematales cyanobacteria are polyphyletic. Polyphasic approach including the combination of light microscopy, cultures and the analysis of 16S rRNA gene sequences provide a promising approach to ascertain the diversity of cyanobacteria in different habitats.

남조세균 Anabaena 종 구분을 위한 RNA Polymerase Beta Subunit (rpoB) 유전자 염기서열 분석 (Analysis of RNA Polymerase Beta Subunit (rpoB) Gene Sequences for the Discrimination of Cyanobacteria Anabaena Species)

  • 천주용;이민아;기장서
    • 미생물학회지
    • /
    • 제47권3호
    • /
    • pp.268-274
    • /
    • 2011
  • 남조세균 Anabaena (Cyanobacteria, Nostocales)는 담수 생태계에서 녹조 현상을 유발하거나 일부 종은 간독소(hepatotoxin)를 갖고 있어 수질관리 차원에서 주목 받아 왔다. 본 연구는 Anabaena RNA polymerase beta subunit (rpoB) 유전자 염기서열을 규명하였으며, 분류학적 분자 마커로 사용하기 위하여 이들 염기서열의 특성을 평가하였다. Anabaena rpoB 유전자는 16S rRNA 유전자와 비교하여 염기 유사도가 낮으며 유전자 변이가 큰 것으로 분석되었으며, 통계적으로 유의한 차이를 보였다(Student t-test, p<0.01). Parsimony 분석을 통해 rpoB 유전자가 4.8배의 속도로 빠르게 진화하는 것으로 파악되었다. 또한 rpoB 유전자 phylogeny 분석에서 16S rRNA tree보다 높은 해상도로 Anabaena 균주를 명확하게 구분해 주었다. 본 연구 결과는 Anabaena의 종 식별, 분자계통 분류, 분자적 검출을 위해 rpoB 유전자가 매우 효과적이라는 것을 제시해 준다.

낙동강 상류 수역에서 남조류 발생과 천이패턴 - Aphanizomenon 속을 중심으로 - (Occurrence and Succession Pattern of Cyanobacteria in the Upper Region of the Nakdong River : Factors Influencing Aphanizomenon Bloom)

  • 류희성;박혜경;이혜진;신라영;천세억
    • 한국물환경학회지
    • /
    • 제32권1호
    • /
    • pp.52-59
    • /
    • 2016
  • This study investigated the occurrences and succession patterns of harmful cyanobacteria, as well as environmental factors, during a 3-year period (September 2012 to August 2015) in the upper region of the Nakdong River around Sangju weir. A total of 27 cyanobacterial taxa were observed in this study, and classified into 26 species and 1 variety belonging to 11 genera, 5 families, and 3 orders. Cell density ranged from 24 to 42,001 cells/ml, with a geometric mean of 33 cells/ml, during the survey period. The dominant orders differed depending on the survey year; order Oscillatoriales in 2013, Chroococcales in 2014 and Nostocales in 2015. An Aphanizomenon bloom occurred in June 2015 at which time the highest cell density of 36,873 cells/ml was detected in the upper region of the Nakdong River, where as the Aphanizomenon spp. cell density (190-1,704 cells/ml) had been low prior to that time. An Aphanizomenon bloom also occurred at around the same time downstream in the Young River, a major inflow branch of the Nakdong River. The Aphanizomenon cell density along the Nakdong River increased markedly after joining of the YoungRiver, indicating that the Aphanizomenon bloom in the YoungRiver caused a bloom in the Nakdong River. Meteorological and environmental parameters, such as very low precipitation, higher water temperature, pH, and TP concentration, and lower TN/TP ratio, in May and June of 2015 than in 2013 and 2014 exerted marked effects on the Aphanizomenon bloom in June 2015 in the Young River.

낙동강 보 구간에서 남조류의 천이 및 Dolichospermum 속(Nostocales, Cyanophyceae)의 분류학적 고찰 (Succession of Cyanobacterial Species and Taxonomical Characteristics of Dolichospermum spp. (Nostocales, Cyanophyceae) in the Weir Regions of the Nakdong River)

  • 류희성;신라영;서경애;이정호;김경현
    • 한국물환경학회지
    • /
    • 제34권5호
    • /
    • pp.503-513
    • /
    • 2018
  • Freshwater cyanobacterial genus Dolichospermum is one of the most commonly spotted types of phytoplankton, whereas a limited number of studies on morphology of Dolichospermum spp. have been performed in South Korea. The purpose of this study is to investigate the succession pattern of cyanobacteria after weir construction, as well as morphological characteristics of Dolichospermum spp. from natural samples collected in the weir regions of Nakdong River. A total of 31 cyanobacterial taxa observed in this study were classified as belonging to 15 genera, 5 families, and 3 orders. Among them, morphological characteristics in the four species were classified into genus Dolichospermum, for most of the planktic former members of the genus Anabaena, were observed through light microscopy. Water bloom frequently occurred in the middle region of Nakdong River, the maximum number of cyanobacterial species appeared in the lower region of Nakdong River. The appearance of order Chrooccocales was only observed during summer when population density of Microcystis aeruginosa reached an annual peak. In contrast, filamentous cyanobacteria was observed throughout the whole year, even if when water temperature was lower than $5^{\circ}C$. It implied that the low-temperature-adapted filamentous cyanobacteria can grow in a range of water temperatures. Coil diameter of D. crassum from natural samples was $75{\sim}140{\mu}m$ ($ave.=91.3{\mu}m$; n = 94), slightly larger than those reported by previous studies. Dolichospemum smithii ($Kom{\grave{a}}rek$) Wacklin et al. 2009, was described for the first time in Nakdong River.

geoA 유전자를 이용한 사상형 남조류(Nostocales, Oscillatoriales)의 Geosmin 생성능 검출 (Detection of Geosmin Production Capability Using geoA Gene in Filamentous Cyanobacteria (Nostocales, Oscillatoriales) Strains)

  • 류희성;신라영;서경애;이정호;김경현
    • 한국물환경학회지
    • /
    • 제34권6호
    • /
    • pp.661-668
    • /
    • 2018
  • Geosmin is volatile metabolites produced by a range of filamentous cyanobacteria which causes taste and odor problems in drinking water. Molecular ecological methods which target biosynthetic genes (geoA) are widely adopted to detect geosmin-producing cyanobacteria. The aim of this study was to investigate the potential production capability of 8 strains isolated from the Nakdong River. Ultimately, a suggestion for a genetical monitoring tool for the identification of geosmin producers in domestic waters was to be made. Geosmin was detected using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS) in two strains of Dolichospermum plactonicum (DGUC006, DGUC012) that were cultured for 28 day. The highest concentrations during the experiment period was $17,535ngL^{-1}$ and $14,311ngL^{-1}$ respectively. Additionally, geoA genes were amplified using two primers (geo78F/971R and geo78F/982R) from strains shown to produce geosmin, while amplification products were not detected in any of non-producing strains. PCR product (766 bp) was slightly shorter than the expected size for geosmin producers. According to the BLAST analysis, amplified genes were at nucleotide level with Anabaena ucrainica (HQ404996, HQ404997), Dolichospermum planctonicum (KM13400) and Dolichospermum ucrainicum (MF996872) between 99 ~ 100 %. Both strains were thus confirmed as potential geosmin-producing species. We concluded that the molecular method of analysis was a useful tool for monitoring potential cyanobacterial producers of geosmin.

Violetonostoc minutum gen. et sp. nov. (Nostocales, Cyanobacteria) from a rocky substrate in China

  • Cai, Fangfang;Peng, Xin;Li, Renhui
    • ALGAE
    • /
    • 제35권1호
    • /
    • pp.1-15
    • /
    • 2020
  • Two strains isolated from a subtropical region in China, were morphologically identified as a Nostoc-like species, but its taxonomic identity was unknown. In this study, these two strains were taxonomically and phylogenetically characterized based on polyphasic approach combining morphological and genetic characteristics. Though both were virtually indistinguishable from Nostoc in field and cultured material, these two strains were phylogenetically distinct from Nostoc based on 16S rRNA phylogeny. The 16S-23S internal transcribed spacer rRNA secondary structure of these strains showed the unique pattern of D1-D1', Box-B, and V3 helix, which distinguished them from other Nostoc-like heterocytous genera. A unique cluster separated from Nostoc sensu stricto supports the establishment of Violetonostoc gen. nov. with the type species as Violetonostoc minutum sp. nov.

Morphology and taxonomy of the Aphanizomenon spp. (Cyanophyceae) and related species in the Nakdong River, South Korea

  • Ryu, Hui Seong;Shin, Ra Young;Lee, Jung Ho
    • Journal of Ecology and Environment
    • /
    • 제40권3호
    • /
    • pp.144-152
    • /
    • 2016
  • Background: The purpose of this study is to describe the morphological characteristics of the Aphanizomenon spp. and related species from the natural samples collected in the Nakdong River of South Korea. Results: Morphological characteristics in the four species classified into the genera Aphanizomenon Morren ex Bornet et Flahault 1888 and Cuspidothrix Rajaniemi et al. 2005 were observed by light microscopy. The following four taxa were identified: Aphanizomenon flos-aquae Ralfs ex Bornet et Flahault, Aphanizomenon klebahnii Elenkin ex Pechar, Aphanizomenon skujae $Kom{\acute{a}}rkov{\acute{a}}-Legnerov{\acute{a}}$ et Cronberg, and Cuspidothrix issatschenkoi ($Usa{\check{c}}ev$) Rajaniemi et al. Aph. flos-aquae and Aph. klebahnii always formed in fascicles; the others only occurred in solitary. Aph. flos-aquae was similar to Aph. klebahnii, whereas these species differed from each other by the size and shape of fascicles, which was macroscopic in Aph. flos-aquae and microscopic in the Aph. klebahnii. One of their characteristics was that trichomes are easily disintegrating during microscopic examination. C. issatschenkoi could be clearly distinguished from other species by hair-shaped terminal cell. Its terminal cell was almost hyaline and markedly pointed. Young populations of the species without heterocytes run a risk of a misidentification. Aph. skujae was characterized by akinete. Morphological variability of akinetes from natural samples collected in the Nakdong River was rather smaller than those reported by previous study. Conclusions: C. issatschenkoi are described for the first time in the Nakdong River. In addition, Aph. klebahnii and Aph. skujae are new to South Korea.

Morphological characterization and molecular phylogenetic analysis of Dolichospermum hangangense (Nostocales, Cyanobacteria) sp. nov. from Han River, Korea

  • Choi, Hye Jeong;Joo, Jae-Hyoung;Kim, Joo-Hwan;Wang, Pengbin;Ki, Jang-Seu;Han, Myung-Soo
    • ALGAE
    • /
    • 제33권2호
    • /
    • pp.143-156
    • /
    • 2018
  • Dolichospermum is a filamentous and heterocytous cyanobacterium that is one of the commonly occurring phytoplanktons in the Han River of Korea. Morphological observations led to the identification of D. planctonicum-like filaments in seasonal water samples. In the present study, we successfully isolated these filaments using culture methods, and examined its morphology using light and scanning electron microscopy. The morphology of the D. planctonicumlike species differed from that of typical D. planctonicum; it had thin cylindrical-shaped akinetes, which were narrower towards the ends than at the center. This morphology is firstly described in the genus Dolichospermum. In addition, the akinetes in the filament developed solitarily and were distant from the heterocytes. Phylogenetic analysis of the 16S rRNA sequences showed that our Dolichospermum clustered with D. planctonicum and D. circinale, which have coiled trichome. However, phylogenetic analysis of the gene encoding rivulose-1,5-bisphosphate carboxylase (rbcLX) clearly separated our species from other Dolichospermum, forming a unique clade. Additionally, structures of D. planctonicum and D. hangangense strains were different type in Box-B and V3 region. These results demonstrated that the new Dolichospermum species was unique in morphology and molecular traits. Therefore, we propose this to be a new species belonging to genus Dolichospermum with the name Dolichospermum hangangense sp. nov.

Amazonocrinis thailandica sp. nov. (Nostocales, Cyanobacteria), a novel species of the previously monotypic Amazonocrinis genus from Thailand

  • Tawong, Wittaya;Pongcharoen, Pongsanat;Pongpadung, Piyawat;Ponza, Supat;Saijuntha, Weerachai
    • ALGAE
    • /
    • 제37권1호
    • /
    • pp.1-14
    • /
    • 2022
  • Cyanobacteria are distributed worldwide, and many new cyanobacterial species are discovered in tropical region. The Nostoc-like genus Amazonocrinis has been separated from the genus Nostoc based on polyphasic methods. However, species diversity within this genus remains poorly understood systematically because only one species (Amazonocrinis nigriterrae) has been described. In this study, two novel strains (NUACC02 and NUACC03) were isolated from moist rice field soil in Thailand. These two strains were characterized using a polyphasic approach, based on morphology, 16S rRNA phylogenetic analysis, internal transcribed spacer secondary structure and ecology. Phylogenetic analyses based on 16S rRNA gene sequences confirmed that the two novel strains formed a monophyletic clade related to the genus Amazonocrinis and were distant from the type species A. nigriterrae. The 16S rRNA gene sequence similarity (<98.1%) between novel strains and all other closely related taxa including the Amazonocrinis members exceeded the cutoff for species delimitation in bacteriology, reinforcing the presence of a new Amazonocrinis species. Furthermore, the novel strains possessed unique phenotypic characteristics such as the presence of the sheath, necridia-like cells, larger cell dimension and akinete cell arrangement in long-chains and the singularity of D1-D1', Box-B, V2, and V3 secondary structures that distinguished them from other Amazonocrinis members. Considering all the results, we described our two strains as Amazonocrinis thailandica sp. nov. in accordance with the International Code of Nomenclature for Algae, Fungi and Plants.

낙동강에서 분리된 Aphanizomenon flos-aquae (Cyanophyceae) 균주의 목표 유전자를 이용한 잠재적 독소 생성능 및 계통학적 분석 (Analysis of Potential Toxigenicity and Phylogeny using Target Genes in Aphanizomenon flos-aquae (Cyanophyceae) strains isolated from the Nakdong River)

  • 류희성;안성민;임창건;신라영;박종근;이정호
    • 생태와환경
    • /
    • 제50권1호
    • /
    • pp.137-147
    • /
    • 2017
  • 독소 생성 분류군의 정의는 분리균주에 의해서 동정되고, 단일배양에 의한 독소 생성 여부 및 유전적 검토가 확인된 분류군을 의미한다. 이러한 관점에서 Aphanizomenon flos-aquae의 독소 생성능은 세계적으로 아직 논쟁의 여지가 있다. 본 연구는 낙동강에서 분리한 Aphanizomenon flos-aquae (DGUC001, DGUC003)을 대상으로 16S rRNA 염기서열을 이용하여 계통학적 위치를 확인하고, 남세균독소인 saxitoxin (STX)과 cylindrospermopsin (CYN)의 잠재적 생성능력을 유전자 수준에서 검토하였다. 연구에 사용된 균주는 2016년 8월과 2016년 10월에 낙동강 본류구간의 하천수에서 분리되었다. 계통학적 분석에는 16S rRNA가 사용되었으며, 독소 생성 유전자는 CYN과 STX 생합성에 관여하는 cyrA, cyrJ, sxtA, sxtI 유전자가 선택되었다. 분리된 균주 DGUC001과 DGUC003은 육안으로 관찰 가능한 크기의 다발(fascicles)을 형성하였으며, 세포사(trichome)가 병렬 형태로 나열되고, 세포사의 양쪽 끝에 위치한 말단 세포(terminal cell)가 거의 투명하거나 긴 끈 형태의 세포질을 가지고 있었다. 또한, 두 개의 균주는 98.4%의 유전적 유사도를 나타내어 동일종으로 판단되었고, 유전자 은행에서 선별한 Cluster I의 Aph. flos-aquae strains과도 계통수에서 66~82%의 bootstrap value의 지지도로 단일 cluster에 포함되었다. 확보된 두 개 균주의 유전자 정보는 유전자은행 NCBI에 등록되었으며, KY327795, KY327796의 Accession no.를 부여받았다. 한편, 세포독소 CYN의 생합성에 관여하는 유전자 cyrA와 cyrJ는 두 개 균주 모두에서 확인되지 않았다. STX의 생합성을 담당하는 유전자 중 sxtA 유전자는 두 개의 균주에서 확보되었으며, 독소생합성 과정의 분자생물학적 지표 역할을 하는 sxtI 유전자는 발견되지 않았다. 따라서 낙동강 현장시료에서 분리된 두 개의 균주는 형태학적 및 계통분류학적으로 동일종인 Aphanizomenon flos-aquae Ralfs ex Bornet et Flahault 1888로 동정되었으며, 두 개의 균주는 CYN과 STX의 잠재적인 독소 비생성 균주로 확인되었다. 이 결과를 통하여 Aph. flos-aquae가 독소 생성 분류군으로 분류되는 것에 대한 보다 면밀한 검토가 필요할 것으로 판단되었다.