• Title/Summary/Keyword: Nose Shape

Search Result 187, Processing Time 0.026 seconds

The Changes of Shinkansen Vehicles' Nose Shape (신간선 전두부 디자인의 형상 변천)

  • Kim, Kwang-Myung;Han, Suk-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.124-130
    • /
    • 2007
  • The emphasis of this paper is to find out the changes in length of nose in line with speed improvement and changes of the tendency in the shape of the nose in line with time series based on the Shinkansen vehicle. The length of the nose on the lines of high speed tends to get longer, however there is no proportion between the speed and the nose according to optimal design that was designed to reduce micro-pressure wave and air resistance. The Shinkansen vehicles, according to the shape, can be classified in to an Advanced Paraboloid shape, a Sharp-nosed shape, a Flat-nosed shape and an Organic Double-edged shape and is gradually changing in the trend of diversity and distinction. Hereafter, the design of the nose will be developed better into the design that will comprehend identity of manufacturer, region and culture on the basis of optimized aerodynamic shape.

A study on the Changes of TGV & ICE Series' Nose Shape (TGV & ICE Series의 전두부 디자인 형상변천에 관한 연구)

  • Lee, Hee-Yup;Hong, Suk-Ki;Na, Hee-Seung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1835-1842
    • /
    • 2007
  • The purpose of this paper describes the changes of TGV & ICE series' nose shape by increasing train speed and according to the periodical characteristics. As the speed increases, the length of the nose shape trends to lengthen longer. But the nose shape length does not increase as speed improves by optimized nose shape to reduce aerodynamic drag and micro-pressure wave in tunnels. TGV & ICE series' nose shape can be classified into Advanced paraboloid type, Shape-nosed type, Organic double-edged type and Flat-nosed type by the advance research(the changes of Shinkansen vehicle' nose shape) of high speed railway. Because it trends to be diversified and characterized more and more. This paper analyzed and introduced as TGV & ICE series' nose shape by top 2 nation (Germany, France) and high speed railway in the past years(1980-2007) for their railway design trends by new positioning(Advance research).

  • PDF

Effect of Train Nose Shape on the High-Speed railway Tunnel Entry Compression Wave (고속열차의 선두부 형상이 터널 입구압력파에 미치는 영향)

  • 김희동;김태호;서태원
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.596-603
    • /
    • 1998
  • The entry compression wave, which is generated at the entrance of the tunnel, is almost always associated with the pressure transients in the tunnel as well as the impulse noise at the exit of the tunnel. It is highly required to design the train nose shape that can minimize such undesirable phenomena. The objective of the current work is to investigate the effects of the train nose shape on the entry compression wave. Numerical computations were applied to one-dimensional unsteady compressible flow in high-speed railway train/tunnel systems. A various shape of train noses were tested for a wide range of train speeds. The results showed that the strength of the entry compression wave is not influenced by the train nose shape, but the time variation of pressure in the entry compression wavefront is strongly related to the train nose shape. The current method of the characteristics was able to represent a desirable nose shape for various train speeds. Optimum nose shape was found to considerably reduce the maximum pressure gradient of the entry compression wave.

  • PDF

Study on the Design Method for the Train Nose Shape Using the Configuration Function (형상함수를 이용한 열차 전두부 설계기법 연구)

  • Ku, Yo-Cheon;Rho, Joo-Hyun;Yun, Su-Hwan;Kwak, Min-Ho;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2218-2223
    • /
    • 2008
  • A nose shape is strongly related with the aerodynamic performances of train. Therefore shape definition and aerodynamic performance analysis are important for train nose shape design. In this study, a new design method was suggested for train nose shape design by configuration function. To this end, the nose shape was classified by box type and each box shape is defined. After that the 3-D shape of train was defined as several mathematical functions by combination of each box shape. Also it was shown that the wind shield of driver's seat and complex curves of surface can be expressed using superposition of functions. This methodology can be used for grid generation of numerical analysis, and applied to aerodynamic optimization design of nose shape.

  • PDF

Numerical Study on Variation of Penetration Performance into Concrete by Penetrator Nose Shape (침투자의 노즈 형상에 따른 콘크리트 침투성능 변화에 관한 수치적 연구)

  • Ju, Yongwon
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.109-116
    • /
    • 2018
  • In order to destroy the hard target, it is essential to develop a penetration warhead with high penetration performance. To design a penetration warhead, this paper discusses the effect of nose shape factors such that nose shape, nose length, nose tip diameter, on the penetration performance of the penetrator. AUTODYN-2D has been used to conduct the computational analysis. The experimental result of Forrestal, and a simulation result have been compared to verify the reliability of computational analysis. Computational results show that the nose length have more influence on the penetration performance than the nose shape. Furthermore, simulation results show that the penetration performance can be improved by increasing the nose tip diameter to a specific value, when the nose length of the penetrator is uniform.

The Changes of Shinkansen vehicles' nose shape (신간선 전두부 디자인의 형상변천)

  • Kim Kwang Myung;Han Suk-Woo
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.94-100
    • /
    • 2005
  • This paper describes the changes of Shinkansen vehicles' nose shape by increasing train speed and according to the stream of time. As the speed increases, the length of the nose trends to lengthen longer. But the nose length does not increase as speed improves by optimized nose shape to reduce aerodynamic drag and micro-pressure wave in tunnels. Shinkansen vehicles nose shape can be classified into Advanced paraboloid type, Sharp-nosed type, Organic double-edged type and Flat-nosed type. In addition, it trends to be diversified and characterized more and more. In the near future, nose designs will be emphasized by the design concept including identity of each JR company based on optimized aerodynamic shape.

  • PDF

Optimal Design for the Nose Shape of Commercial High-speed Train Using Function of Train Configuration (열차형상함수를 이용한 상용 고속열차 전두부 형상 최적설계)

  • Kwak, Minho;Yun, Suhwan;Park, Choonsoo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.279-288
    • /
    • 2015
  • Using the Vehicle Modeling Function, which can model various 3D nose shapes, nose shape optimization is performed to reduce the aerodynamic drag of the KTX Sancheon. 2D characteristic shapes of the KTX Sancheon nose were extracted and a base model of the KTX Sancheon was constructed for design optimization using the Vehicle Modeling Function. The design space was constructed with the base model and does not violate the shape constraints of commercial trains. Through nose shape optimization with the Broyden-Fletcher-Goldfarb-Shanno algorithm, the aerodynamic drag of the optimized shape was reduced by 6% compared to that of the base model. The longer nose and sharper edge of the optimized shape weaken the vortices behind the last car and can reduce the aerodynamic drag.

Nose Shape Optimization of the High-speed Train to Reduce the Aerodynamic drag and Micro-pressure Wave (공기저항과 미기압파 저감을 위한 고속전철 전두부형상의 최적화설계)

  • Kwon, Hyeok-Bin;Kim, Yu-Shin;Lee, Dong-Ho;Kim, Moon-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.373-379
    • /
    • 2001
  • When a train runs into a tunnel at high-speed, aerodynamic drag suddenly increases and the booming noise is generated at the exit of tunnel. The noise shape is very important to reduce the aerodynamic drag in tunnel as well as on open ground, and the micro-pressure wave that is a source of booming noise is dependent on nose shape, especially on area distribution. In this study, the nose shape has been optimized employing the response surface methodology and the axi-symmetric compressible Navier-Stokes equations. The optimal designs have been executed imposing various conditions of the aerodynamic drag and the micro-pressure wave on object functions. The results show that the multi-objective design was successful to decrease micro-pressure wave and aerodynamic drag of trains.

  • PDF

Nose Shape Optimization of the High-speed Train to Reduce the Micro-pressure Wave (미기압파 저감을 위한 고속전철 전두부형상의 최적화설계)

  • 권혁빈;이관중;이동호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.506-513
    • /
    • 2000
  • The tunnel booming noise generated by a train moving into a tunnel has been one of the most serious constraints in the development of the high-speed trains. It is well known that the nose shape of the train has the significant influence on the intensity of the booming noise. In this study, the nose shape has been optimized by using the response surface methodology and the axi-symmetric compressible Euler equations. The parametric studies are also performed with respect to the slenderness ratio, the blockage ratio and the train speed to investigate their sensitivities to the optimization results. The results show that it is possible to define more general design space by introducing the Hicks-Henne shape functions, resulting in the more effective nose shape than that of Maeda. The mechanism and the aspects of the train-tunnel interaction were also investigated from the results of the parametric study.

  • PDF

Fracture Property of Concrete on Spherical and Flat Nose Shape Projectile Impact (반구형과 평탄형 선단 비상체의 충돌을 받는 콘크리트의 파괴특성)

  • Lee, Sang-Kyu;Kim, Gyu-Yong;Kim, Hong-Seop;Son, Min-Jae;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.98-105
    • /
    • 2016
  • In this study, projectiles with 2 kinds of nose shape: spherical and flat were impacted into normal concrete and fiber reinforced concrete panels. The fracture depth and form, crater diameter, tensile strain at rear face were evaluated. It was confirmed that smaller projectile nose areas resulted in deeper penetrations associated with concentrated impact forces and small front-face crater diameters in impact test. Conversely, larger projectile nose areas resulted in shallower penetrations and larger front-face fracture diameters. Similar front-face failure and strain distribution relationships based on the projectile nose shape were observed for normal and fiber-reinforced concrete although the rear-face tensile strain and scabbing were significantly reduced by the fiber reinforcement. In addition, a direct relationship was confirmed between the penetration depth based on the projectile nose shape and the tensile strain on the rear face. Thus the impact strain behavior is required to predict the scabbing behavior with penetration depth.