• 제목/요약/키워드: Northern blotting

Search Result 69, Processing Time 0.025 seconds

Molecular Cloning and Characterization of the Yew Gene Encoding Squalene Synthase from Taxus cuspidata

  • Huang, Zhuoshi;Jiang, Keji;Pi, Yan;Hou, Rong;Liao, Zhihua;Cao, Ying;Han, Xu;Wang, Qian;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.625-635
    • /
    • 2007
  • The enzyme squalene synthase (EC 2.5.1.21) catalyzes a reductive dimerization of two farnesyl diphosphate (FPP) molecules into squalene, a key precursor for the sterol and triterpene biosynthesis. A full-length cDNA encoding squalene synthase (designated as TcSqS) was isolated from Taxus cuspidata, a kind of important medicinal plants producing potent anti-cancer drug, taxol. The full-length cDNA of TcSqS was 1765 bp and contained a 1230 bp open reading frame (ORF) encoding a polypeptide of 409 amino acids. Bioinformatic analysis revealed that the deduced TcSqS protein had high similarity with other plant squalene synthases and a predicted crystal structure similar to other class I isoprenoid biosynthetic enzymes. Southern blot analysis revealed that there was one copy of TcSqS gene in the genome of T. cuspidata. Semi-quantitative RT-PCR analysis and northern blotting analysis showed that TcSqS expressed constitutively in all tested tissues, with the highest expression in roots. The promoter region of TcSqS was also isolated by genomic walking and analysis showed that several cis-acting elements were present in the promoter region. The results of treatment experiments by different signaling components including methyl-jasmonate, salicylic acid and gibberellin revealed that the TcSqS expression level of treated cells had a prominent diversity to that of control, which was consistent with the prediction results of TcSqS promoter region in the PlantCARE database.

Study on the expression and detection of the p53 mutation in Korean colon cancer cell lines (한국인의 대장암 세포주에서 p53 돌연변이의 발견과 발현에 관한 연구)

  • Jung, Ji-Yeon;Oh, Sang-Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.151-161
    • /
    • 2001
  • Background: Inactivation in p53 tumor suppressor gene through a point mutation and deletion is one of the most frequent genetic changes found in human cancer, with 50% of an incidence. This high rate of mutation mostly suggests that the gene plays a central role in the development of cancer and the mutations detected so far were found in exons 5 to 8. Mutation of p53 locus produced accumulation of abnormal p53 protein, and negative regulation of cell proliferation and transcriptional activation as a suppressor of transformation were lost. In addition, inhibition of its normal cellular function of wild-type by mutant is an important step in tumorigenesis. Method: 4 colon cancer cell lines (SNU C1, C2A, C4, C5) were examined for mutation in exons 5 to 8 of the p53 tumor suppressor gene by PCR-SSCP analysis and expression pattern by western blotting and immunoprecipitation. p53-mediated transactivation ability were examined by CAT assay and base substitution of p53 in SNU C2A cell were detected by DNA sequencing. Results: 1) SNU C2A cell and SNU C5 cell were detected mobility shifts each in exon 5 and exon 7 of p53 gene by the PCR-SSCP method, implicating being of p53 mutation. 2) 3 colon cancer cell lines (SNU C1, SNU C2A, SNU C5) expressed wild type and mutant type p53 protein. 3) In northern blot experiment, SNU C2A and SNU C5 cell expressed high level of p53 mRNA. 4) Results of p53-mediated transactivation in colon cancer cell lines by CAT assay represented only SNU C2A cell has transcriptional activity. 5) DNA sequencing in SNU C2A cell showed missense mutation in codon 179 of one allele, histidine to arginine and wild type p53 in the other allele. Conclusion: Colon cancer cell lines showed correlation with mutation in p53 gene and accumulation of abnormal p53 protein. Colon cancer cell SNU C2A retained p53-mediated transactivation as heterozygous p53 with one mutant allele in 179 codon and the other wild-type allele.

  • PDF

Functional Properties of Human Muscarinic Receptors Hm1, Hm2 and Hm3 Expressed in a Baculovirus/Sf9 Cell System

  • Woo, Hyun-Ae;Woo, Yae-Bong;Bae, Seung-Jin;Kim, Hwa-Jung
    • Biomolecules & Therapeutics
    • /
    • v.7 no.4
    • /
    • pp.307-314
    • /
    • 1999
  • The human muscarinic acetylcholine receptor (mAChR) subtypes Hml, Hm2 and Hm3 have been expressed in insect cells (Spodoptera frugiperda, Sf9) using the baculovirus expression system. Expression of relevant DNA, transcript and receptor proteins was identified by PCR, Northern blotting and [$^{3}H$]QNB binding, respectively. As assessed by [$^{3}H$]QNB binding sites, yields of muscarinic receptors in membrane preparations in this study were as about 5-20 times high as those in mammalian cells reported in previous studies. The [$^{3}H$]QNB competition binding studies with well-known subtype-selective mAChR antagonists showed that the receptors expressed in Sf9 cells retain the pharmacological characteristics expected for the ml , m2 and m3 muscarinic receptors. The ml-selective antagonist, pirenzepine, displayed a considerably higher affinity for Hml by 110-fold and 35-fold than for Hm2 and Hm3, respectively, The m2-selective methoctramine displayed a significantly higher affinity for Hm2 than for Hml and Hm3 (10- and 26-fold, respectively). p-F-HHSiD exhibited high affinity for Hm3 that is not significantly different from those for Hml, but 66-fold higher than its affinity for Hm2. The functional coupling of the recombinant receptors to second messenger systems was also examined. While both Hml and Hm3 stimulated phosphoinositide hydrolysis upon activation by carba-chol, Hm2 produced no response. On the other hand, activation of mAChRs induced the inhibition of forsko-lin-stimulated cyclic AMP formation in Hm2-expressing cells, whereas the significant dose-dependent increase in or poor response on cyclic AMP formation were produced in Hml or Hm3-expressing cells, respectively. These results indicate the differential coupling of recombinant Hml, Hm2 and Hm3 receptors expressed in SF9 cells to intracellular signalling system.

  • PDF

ZNF552, a novel human KRAB/C2H2 zinc finger protein, inhibits AP-1- and SRE-mediated transcriptional activity

  • Deng, Yun;Liu, Bisheng;Fan, Xiongwei;Wang, Yuequn;Tang, Ming;Mo, Xiaoyang;Li, Yongqing;Ying, Zaochu;Wan, Yongqi;Luo, Na;Zhou, Junmei;Wu, Xiushan;Yuan, Wuzhou
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.193-198
    • /
    • 2010
  • In this study, we report the identification and characterization of a novel C2H2 zinc finger protein, ZNF552, from a human embryonic heart cDNA library. ZNF552 is composed of three exons and two introns and maps to chromosome 19q13.43. The cDNA of ZNF552 is 2.3 kb, encoding 407 amino acids with an amino-terminal KRAB domain and seven carboxyl-terminal C2H2 zinc finger motifs in the nucleus and cytoplasm. Northern blotting analysis indicated that a 2.3 kb transcript specific for ZNF552 was expressed in liver, lung, spleen, testis and kidney, especially with a higher level in the lung and testis in human adult tissues. Reporter gene assays showed that ZNF552 was a transcriptional repressor, and overexpression of ZNF552 in the COS-7 cells inhibited the transcriptional activities of AP-1 and SRE, which could be relieved through RNAi analysis. Deletion studies showed that the KRAB domain of ZNF552 may be involved in this inhibition.

Isolation of New CHO Cell Mutants Defective in CMP-Sialic Acid Biosynthesis and Transport

  • Shin, Dong-Jun;Kang, Ji Young;Kim, Youn Uck;Yoon, Joong Sik;Choy, Hyon E;Maeda, Yusuke;Kinoshita, Taroh;Hong, Yeongjin
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.343-352
    • /
    • 2006
  • Sialic acid is a sugar typically found at the N-glycan termini of glycoproteins in mammalian cells. Lec3 CHO cell mutants are deficient in epimerase activity, due to a defect in the gene that encodes a bifunctional UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Sialic acid modification on the cell surface is partially affected in these cells. We have mutagenized Lec3 CHO cells and isolated six mutants (termed C2m) deficient in the cell surface expression of polysialic acid (PSA). Mutant C2m9 was partially defective in expression of cell-surface PSA and wheat germ agglutinin (WGA) binding, while in the other five mutants, both cell-surface PSA and WGA binding were undetectable. PSA expression was restored by complementation with the gene encoding the CMP-sialic acid transporter (CST), indicating that CST mutations were responsible for the phenotypes of the C2m cells. We characterized the CST mutations in these cells by Northern blotting and RT-PCR. C2m9 and C2m45 carried missense mutations resulting in glycine to glutamate substitutions at amino acids 217 (G217E) and 256 (G256E), respectively. C2m13, C2m39 and C2m31 had nonsense mutations that resulted in decreased CST mRNA stability, and C2m34 carried a putative splice site mutation. PSA and CD15s expression in CST-deficient Lec2 cells were partially rescued by G217E CST, but not by G256E CST, although both proteins were expressed at similar levels, and localized to the Golgi. These results indicate that the novel missense mutations isolated in this study affect CST activity.

Regulation of sfs1 gene expression by the cAMP-cAMP receptor protein (sfs1 유전자의 cAMP-cAMP receptor protein에 의한 발현 조절)

  • Yoo, Ju-Soon;Lee, Seung-Jin;Lee, Hee-Young;Chung, Soo-Yeol;Choi, Yong-Lark
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.195-199
    • /
    • 1996
  • We have cloned several E. coli sfs genes which stimulate mal gene expression with $crp^{{\ast}1}$). One the genes (pPVC2) was sequenced and potential CRP binding site is located in the upstream of the putative promoter in the regulatory region. In order to investigate the regulation of the sfs1 gene by the cAMP-CRP complex, we have constructed the sfs-lacZ fusion gene in this research. The overall transcriptional stimulations of sfs1 gene in the presence cAMP were confirmed by ${\beta}-galactosidase$ activity and Western blot analysis of sfs1-lacZ fusion gene. Transcriptional regulation by cAMP-CRP was also confirmed by Northern blot analysis. End-labelled DNA of the DNA fragment in sfs1 regulation region were used for gel retardation assay to examine the CRP-DNA complex in the presence of cAMP. Results here indicate that CRP binding site in the regulatory region of sfs1 gene is positive regulator for the expression of sfs1 gene.

  • PDF

Molecular Cloning and Expression of a Cu/Zn-Containing Superoxide Dismutase from Thellungiella halophila

  • Xu, Xiaojing;Zhou, Yijun;Wei, Shanjun;Ren, Dongtao;Yang, Min;Bu, Huahu;Kang, Mingming;Wang, Junli;Feng, Jinchao
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.423-428
    • /
    • 2009
  • Superoxide dismutases (SODs) constitute the first line of cellular defense against oxidative stress in plants. SODs generally occur in three different forms with Cu/Zn, Fe, or Mn as prosthetic metals. We cloned the full-length cDNA of the Thellungiella halophila Cu/Zn-SOD gene ThCSD using degenerate RT-PCR and rapid amplification of cDNA ends (RACE). Sequence analysis indicated that the ThCSD gene (GenBank accession number EF405867) had an open reading frame of 456 bp. The deduced 152-amino acid polypeptide had a predicted molecular weight of 15.1 kDa, an estimated pI of 5.4, and a putative Cu/Zn-binding site. Recombinant ThCSD protein was expressed in Escherichia coli and assayed for SOD enzymatic activity in a native polyacrylamide gel. The SOD activity of ThCSD was inactivated by potassium cyanide and hydrogen peroxide but not by sodium azide, confirming that ThCSD is a Cu/Zn-SOD. Northern blotting demonstrated that ThCSD is expressed in roots, stems, and leaves. ThCSD mRNA levels increased by about 30-fold when plants were treated with sodium chloride (NaCl), abscisic acid (ABA), and indole-acetic acid (IAA) and by about 50-fold when treated with UVB light. These results indicate that ThCSD is involved in physiological pathways activated by a variety of environmental conditions.

Immunohistochemical Studies for TIMP-1 and TIMP-2 Expression after Irradiation in Lung, Liver and Kidney of C57BL/6 Mouse (C57BL/96 Mouse의 폐, 간, 신장에서 방사선조사 후 TIMP-1, TIMP-2의 발현에 대한 면역조직화학적 연구)

  • Noh, Young-Ju;Ahn, Seung-Do;Kim, Jong-Hoon;Choi, Eun-Kyung;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.181-189
    • /
    • 2001
  • Purpose : Changes in the balance between MMP and TIMP can have a profound effect on the composition in the extracellular matrix (ECM) and affect various cellular functions including adhesion, migration, differentiation of cells, and fibrosis and invasion and metastasis of cancer cells. Radiation therapy is a popular treatment modality for benign and malignant tumor, but the study for radiation effect on MMP and TIMP is scarce. In the current study, we have examined the expression of TIMP in fibrosis-prone (C57BL/6) mice after radiation. Methods and Materials : Adult female mice of $10\~12$ weeks were used. The whole body were irradiated using a Varian CL-4/100 with 2 and 10 Gy. Immunohistochemical staining was peformed according to Avidin Biotin complex method and evaluated by observing high power field. For TIMP-1, TIMP-2 antibodies, reactivity was assessed in the parenchymal cell and in the stromal cell. The scale of staining was assessed by combining the quantitative and qualiative intensity of staining. Results : TIMP-1 immunoreactivity did not change in lung. But, in liver, TIMP-1 immunoreactivity was localized in cytoplasm of hepatocyte and Kupffer cell. in kidney, TIMP-1 immunoreactivity was localized in cytoplasm of some tubular cell. Temporal variations were not seen. Dose-response relationship was not seen except kidney. TIMP-2 immunoreactivity in lung was a score (++) at 0 Gy and elevated to a score (+++) at 2 Gy. TIMP-2 immunoreactivity was a score (++) in liver at 0 Gy. TIMP-2 immunoreactivity was localized in cytoplasm of hepatocyte and Kupffer cell as same as patterns of TIMP-1 immunoreactivity. The TIMP-2 immunoreactivity in liver was elevated to (+++) at 2 Gy. Immunoreactivity to TIMP-2 in kidney was a score (+++) at 0 Gy and was not changed at 10 Gy. The score of TIMP-2 immunoreactivity was reduced to (++) at 2 Gy. TIMP-2 immunoreactivity was confined to tubules in kidney. Temporal variation of TIMP-2 immunoreactivity was irregular. Dose-response relationship of TIMP-2 immunoreactivity was not seen. Conclusions : Differences between intensity of expression of TIMP-1 and TIMP-2 in each organ was present. Expression of TIMP was localized to specific cell in each organ. Irradiation increased TIMP-1 immunoreactivity in the liver and the kidney. Irradiation increased TIMP-2 immunoreactivity in the lung. But, in the liver and the kidney, TIMP-2 expression to radiation was irregular. Temporal variation of TIMP-2 immunoreactivity was irregular. Dose-response relationship of TIHP-2 immunoreactivity was not seen. In the future, we expect that the study of immunohistochemical staining of longer period of postirradiation and quantitative analysis using western blotting and northern blotting could define the role of TIMP in the radiation induced tissue fibrosis.

  • PDF

Cloning and Characterization of a 5-Enolpyruvyl Shikimate 3-Phosphate Synthase (EPSPS) Gene from Korean Lawn Grass (Zoysia japonica) (들잔디 5-Enolpyruvyl Shikimate 3-Phosphate Synthase(EPSPS) 유전자 클로닝 및 특성)

  • Lee, Hye-Jung;Lee, Geung-Joo;Kim, Dong-Sub;Kim, Jin-Beak;Ku, Ja-Hyeong;Kang, Si-Yong
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.648-655
    • /
    • 2010
  • This study is the first comprehensive report on the molecular cloning, structural characterization, sequence comparison between wild and mutant types, copy number in the genome, expression features and activities of a gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in Korean lawn grass ($Zoysia$ $japonica$). The full length cDNA of the EPSPS from Korean lawn grass ($zj$EPSPS) obtained from a 3' and 5' RACE method was 1540 bp, containing a 1176 bp ORF, a 144 bp leader sequence (5' UTR) and a 220 bp 3' UTR, which was eventually decoded 391 amino acid residues with a molecular mass of 41.74 kDa. The Southern blot detection of the $zj$EPSPS showed that the gene exists as a single copy in the Korean lawn grass genome. Sequence comparison of the $zj$EPSPS gene demonstrated that the glyphosate-tolerant mutant (GT) having a Pro-53 to Ser substitution in the gene seems to have a preferred binding activity of the enzyme to phosphoenol pyruvate(PEP) over glyphosate, which allows the continuous synthesis of aromatic amino acids in the shikimate pathway. From the Northern blotting analysis, the $zj$EPSPS was found to be highly expressed, with continuous increase until 36 hours after 0.5% glyphosate treatment in both wild and mutant samples, but 1.5-fold higher EPSP synthase activity was observed in the tolerant mutant when exposed to the glyphosate treatment. The molecular information of the $zj$EPSPS gene obtained from this study needs to be further dissected to be more effectively applied to the development of gene-specific DNA markers and zoysiagrass cultivars; nevertheless, the glyphosate-tolerant mutant having the featured $zj$EPSPS gene can be provided to turfgrass managers for weed problems with timely adoptable management options.