Browse > Article

Isolation of New CHO Cell Mutants Defective in CMP-Sialic Acid Biosynthesis and Transport  

Shin, Dong-Jun (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School)
Kang, Ji Young (Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University)
Kim, Youn Uck (Division of Applied Biological Sciences, Sunmoon University)
Yoon, Joong Sik (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School)
Choy, Hyon E (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School)
Maeda, Yusuke (Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University)
Kinoshita, Taroh (Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University)
Hong, Yeongjin (Genomic Research Center for Enteropathogenic Bacteria and Department of Microbiology, Chonnam National University Medical School)
Abstract
Sialic acid is a sugar typically found at the N-glycan termini of glycoproteins in mammalian cells. Lec3 CHO cell mutants are deficient in epimerase activity, due to a defect in the gene that encodes a bifunctional UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Sialic acid modification on the cell surface is partially affected in these cells. We have mutagenized Lec3 CHO cells and isolated six mutants (termed C2m) deficient in the cell surface expression of polysialic acid (PSA). Mutant C2m9 was partially defective in expression of cell-surface PSA and wheat germ agglutinin (WGA) binding, while in the other five mutants, both cell-surface PSA and WGA binding were undetectable. PSA expression was restored by complementation with the gene encoding the CMP-sialic acid transporter (CST), indicating that CST mutations were responsible for the phenotypes of the C2m cells. We characterized the CST mutations in these cells by Northern blotting and RT-PCR. C2m9 and C2m45 carried missense mutations resulting in glycine to glutamate substitutions at amino acids 217 (G217E) and 256 (G256E), respectively. C2m13, C2m39 and C2m31 had nonsense mutations that resulted in decreased CST mRNA stability, and C2m34 carried a putative splice site mutation. PSA and CD15s expression in CST-deficient Lec2 cells were partially rescued by G217E CST, but not by G256E CST, although both proteins were expressed at similar levels, and localized to the Golgi. These results indicate that the novel missense mutations isolated in this study affect CST activity.
Keywords
Chinese Hamster Ovary Cell; CMP-sialic Acid Transporter; Lec2; Lec3; Polysialic Acid; Sialic Acid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Eisenberg, I., Avidan, N., Potikha, T., Hochner, H., Chen, M., et al. (2001) The UDP-N-acetylglucosamine 2-epimerase/Nacetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat. Genet. 29, 83−87   DOI   ScienceOn
2 Hong, Y. and Stanley, P. (2003) Lec3 Chinese hamster ovary mutants lack UDP-N-acetylglucosamine 2-epimerase activity because of mutations in the epimerase domain of the Gne gene. J. Biol. Chem. 278, 53045−53054   DOI   ScienceOn
3 Kayashima, T., Matsuo, H., Satoh, A., Ohta, T., Yoshiura, K., et al. (2002) Nonaka myopathy is caused by mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase gene (GNE). J. Hum. Genet. 47, 77−79   DOI
4 Kojima, N., Tachida, Y., and Tsuji, S. (1998) Alpha 1,6-linked fucose affects the expression and stability of polysialic acidcarrying glycoproteins in Chinese hamster ovary cells. J. Biochem. (Tokyo) 124, 726−737   DOI   ScienceOn
5 Miyazaki, K., Ohmori, K., Izawa, M., Koike, T., Kumamoto, K., et al. (2004) Loss of disialyl Lewis(a), the ligand for lymphocyte inhibitory receptor sialic acid-binding immunoglobulin- like lectin-7 (Siglec-7) associated with increased sialyl Lewis(a) expression on human colon cancers. Cancer Res. 64, 4498−4505   DOI   ScienceOn
6 Oelmann, S., Stanley, P., and Gerardy-Schahn, R. (2001b) Point mutations identified in Lec8 Chinese hamster ovary glycosylation mutants that inactivate both the UDP-galactose and CMP-sialic acid transporters. J. Biol. Chem. 276, 26291−26300   DOI   ScienceOn
7 Schwarzkopf, M., Knobeloch, K. P., Rohde, E., Hinderlich, S., Wiechens, N., et al. (2002) Sialylation is essential for early development in mice. Proc. Natl. Acad. Sci. USA 99, 5267−5270
8 Simanek, E. E., McGarvey, G. J., Jablonowski, J. A., and Wong, C. H. (1998) Selectin (−) carbohydrate interactions: from natural ligands to designed mimics. Chem. Rev. 98, 833−862
9 Wang, C., Rougon, G., and Kiss, J. Z. (1994) Requirement of polysialic acid for the migration of the O-2A glial progenitor cell from neurohypophyseal explants. J. Neurosci. 14, 4446−4457
10 Abeijon, C., Mandon, E. C., and Hirschberg, C. B. (1997) Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus. Trends Biochem. Sci., 22, 203−207
11 Aoki, K., Ishida, N., and Kawakita, M. (2001) Substrate recognition by UDP-galactose and CMP-sialic acid transporters. Different sets of transmembrane helices are utilized for the specific recognition of UDP-galactose and CMP-sialic acid. J. Biol. Chem. 276, 21555−21561   DOI   ScienceOn
12 Potvin, B., Raju, T. S., and Stanley, P. (1995) Lec32 is a new mutation in Chinese hamster ovary cells that essentially abrogates CMP-N-acetylneuraminic acid synthetase activity. J. Biol. Chem. 270, 30415−30421   DOI
13 Maquat, L. E. (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell. Biol. 5, 89−99
14 Eckhardt, M., Muhlenhoff, M., Bethe, A., and Gerardy-Schahn, R. (1996) Expression cloning of the Golgi CMP-sialic acid transporter. Proc. Natl. Acad. Sci. USA 93, 7572−7576
15 Eckhardt, M., Gotza, B., and Gerardy-Schahn, R. (1999) Membrane topology of the mammalian CMP-sialic acid transporter. J. Biol. Chem. 274, 8779−8787   DOI   ScienceOn
16 Hong, Y., Ohishi, K., Inoue, N., Kang, J. Y., Shime, H., et al. (2002) Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin. EMBO J. 21, 5047−5056   DOI   ScienceOn
17 Tong, H. H., Liu, X., Chen, Y., James, M., and Demaria, T. (2002) Effect of neuraminidase on receptor-mediated adherence of Streptococcus pneumoniae to chinchilla tracheal epithelium. Acta Otolaryngol. 122, 413−419   DOI   ScienceOn
18 Harvey, B. E., Toth, C. A., Wagner, H. E., Steele, G. D., Jr., and Thomas, P. (1992) Sialyltransferase activity and hepatic tumor growth in a nude mouse model of colorectal cancer metastases. Cancer Res. 52, 1775−1779
19 Antoine, T., Priem, B., Heyraud, A., Greffe, L., Gilbert, M., et al. (2003) Large-scale in vivo synthesis of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered Escherichia coli. Chembiochemistry 4, 406−412   DOI   ScienceOn
20 Frosch, M., Gorgen, I., Boulnois, G. J., Timmis, K. N., and Bitter- Suermann, D. (1985) NZB mouse system for production of monoclonal antibodies to weak bacterial antigens: isolation of an IgG antibody to the polysaccharide capsules of Escherichia coli K1 and group B meningococci. Proc. Natl. Acad. Sci. USA 82, 1194−1198
21 Martinez-Duncker, I., Dupre, T., Piller, V., Piller, F., Candelier, J. J., et al. (2005) Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood 105, 2671−2676   DOI   ScienceOn
22 Saitoh, O., Wang, W. C., Lotan, R., and Fukuda, M. (1992) Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J. Biol. Chem. 267, 5700−5711
23 Alexander, D. A. and Dimock, K. (2002) Sialic acid functions in enterovirus 70 binding and infection. J. Virol., 76, 11265−11272
24 Durbec, P. and Cremer, H. (2001) Revisiting the function of PSA-NCAM in the nervous system. Mol. Neurobiol. 24, 53−64   DOI
25 Effertz, K., Hinderlich, S., and Reutter, W. (1999) Selective loss of either the epimerase or kinase activity of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase due to site-directed mutagenesis based on sequence alignments. J. Biol. Chem. 274, 28771−28778   DOI
26 Strehle, E. M. (2003) Sialic acid storage disease and related disorders. Genet. Test 7, 113−121   DOI   ScienceOn
27 Takano, R., Muchmore, E., and Dennis, J. W. (1994) Sialylation and malignant potential in tumour cell glycosylation mutants. Glycobiology 4, 665−674
28 Hinderlich, S., Stasche, R., Zeitler, R., and Reutter, W. (1997) A bifunctional enzyme catalyzes the first two steps in Nacetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/ N-acetylmannosamine kinase. J. Biol. Chem. 272, 24313−24318   DOI   ScienceOn
29 Kronis, K. A. and Carver, J. P. (1985) Wheat germ agglutinin dimers bind sialyloligosaccharides at four sites in solution: proton nuclear magnetic resonance temperature studies at 360 MHz. Biochemistry 24, 826−833
30 Harvey, B. E. and Thomas, P. (1993) Inhibition of CMP-sialic acid transport in human liver and colorectal cancer cell lines by a sialic acid nucleoside conjugate (KI-8110). Biochem. Biophys. Res. Commun. 190, 571−575   DOI   ScienceOn
31 Matrosovich, M. and Klenk, H. D. (2003) Natural and synthetic sialic acid-containing inhibitors of influenza virus receptor binding. Rev. Med. Virol. 13, 85−97   DOI   ScienceOn
32 Schachner, M. (1997) Neural recognition molecules and synaptic plasticity. Curr. Opin. Cell Biol. 9, 627−634
33 Tang, J., Rutishauser, U., and Landmesser, L. (1994) Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 13, 405−414
34 Yang, P., Major, D., and Rutishauser, U. (1994) Role of charge and hydration in effects of polysialic acid on molecular interactions on and between cell membranes. J. Biol. Chem. 269, 23039−23044
35 Angata, T. and Varki, A. (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev., 102, 439−469   DOI   ScienceOn
36 Bresalier, R. S., Ho, S. B., Schoeppner, H. L., Kim, Y. S., Sleisenger, M. H., et al. (1996) Enhanced sialylation of mucinassociated carbohydrate structures in human colon cancer metastasis. Gastroenterology 110, 1354−1367
37 Ono, K., Tomasiewicz, H., Magnuson, T., and Rutishauser, U. (1994) N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13, 595−609   DOI   ScienceOn
38 Eckhardt, M., Muhlenhoff, M., Bethe, A., Koopman, J., Frosch, M., et al. (1995) Molecular characterization of eukaryotic polysialyltransferase-1. Nature 373, 715−718   DOI   ScienceOn
39 Gorelik, E., Xu, F., Henion, T., Anaraki, F., and Galili, U. (1997) Reduction of metastatic properties of BL6 melanoma cells expressing terminal fucose(alpha)1-2-galactose after alpha1,2- fucosyltransferase cDNA transfection. Cancer Res. 57, 332−336
40 Oelmann, S., Stanley, P., and Gerardy-Schahn, R. (2001a) Point mutations identified in Lec8 Chinese hamster ovary glycosylation mutants that inactivate both the UDP-galactose and CMP-sialic acid transporters. J. Biol. Chem. 276, 26291−26300   DOI   ScienceOn
41 Eckhardt, M., Gotza, B., and Gerardy-Schahn, R. (1998) Mutants of the CMP-sialic acid transporter causing the Lec2 phenotype. J. Biol. Chem. 273, 20189−20195   DOI   ScienceOn
42 Lawrence, S. M., Huddleston, K. A., Pitts, L. R., Nguyen, N., Lee, Y. C., et al. (2000) Cloning and expression of the human N-acetylneuraminic acid phosphate synthase gene with 2- keto-3-deoxy-D-glycero-D-galacto-nononic acid biosynthetic ability. J. Biol. Chem. 275, 17869−17877   DOI   ScienceOn
43 Keppler, O. T., Hinderlich, S., Langner, J., Schwartz-Albiez, R., Reutter, W., et al. (1999) UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284, 1372−1376   DOI   ScienceOn
44 Seppala, R., Lehto, V. P., and Gahl, W. A. (1999) Mutations in the human UDP-N-acetylglucosamine 2-epimerase gene define the disease sialuria and the allosteric site of the enzyme. Am. J. Hum. Genet. 64, 1563−1569   DOI   ScienceOn
45 Vestweber, D. and Blanks, J. E. (1999) Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev. 79, 181−213
46 Munster, A. K., Eckhardt, M., Potvin, B., Muhlenhoff, M., Stanley, P., et al. (1998) Mammalian cytidine 5′-monophosphate N-acetylneuraminic acid synthetase: a nuclear protein with evolutionarily conserved structural motifs. Proc. Natl. Acad. Sci. USA 95, 9140−9145
47 Stasche, R., Hinderlich, S., Weise, C., Effertz, K., Lucka, L., et al. (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. J. Biol. Chem. 272, 24319−24324   DOI   ScienceOn
48 Troy, F. A., 2nd. (1992) Polysialylation: from bacteria to brains. Glycobiology 2, 5−23   DOI   ScienceOn
49 Monsigny, M., Roche, A. C., Sene, C., Maget-Dana, R., and Delmotte, F. (1980) Sugar-lectin interactions: how does wheatgerm agglutinin bind sialoglycoconjugates- Eur. J. Biochem. 104, 147−153   DOI   ScienceOn
50 Hirschberg, C. B. (1996) Transporters of nucleotides and nucleotide derivatives in the endoplasmic reticulum and Golgi apparatus. Soc. Gen. Physiol. Ser. 51, 105−120
51 Aoki, K., Sun-Wada, G. H., Segawa, H., Yoshioka, S., Ishida, N., et al. (1999) Expression and activity of chimeric molecules between human UDP-galactose transporter and CMP-sialic acid transporter. J. Biochem. (Tokyo) 126, 940−950   DOI   ScienceOn
52 Hong, Y., Kang, J. Y., Kim, Y. U., Shin, D. J., Choy, H. E., et al. (2005) New mutant Chinese hamster ovary cell representing an unknown gene for attachment of glycosylphosphatidylinositol to proteins. Biochem. Biophys. Res. Commun. 335, 1060−1069   DOI   ScienceOn
53 Santer, U. V., DeSantis, R., Hard, K. J., van Kuik, J. A., Vliegenthart, J. F., et al. (1989) N-linked oligosaccharide changes with oncogenic transformation require sialylation of multiantennae. Eur. J. Biochem. 181, 249−260   DOI   ScienceOn
54 Eckhardt, M. and Gerardy-Schahn, R. (1997) Molecular cloning of the hamster CMP-sialic acid transporter. Eur. J. Biochem. 248, 187−192   DOI   ScienceOn
55 Shen, Y., Kohla, G., Lrhorfi, A. L., Sipos, B., Kalthoff, H., et al. (2004) O-acetylation and de-O-acetylation of sialic acids in human colorectal carcinoma. Eur. J. Biochem. 271, 281−290   DOI   ScienceOn