• Title/Summary/Keyword: Northern East China Sea

Search Result 137, Processing Time 0.043 seconds

Temporal and Spatial Variability of Chlorophyll a in the Northern East China Sea using Ocean Color Images in Summer (해색영상을 이용한 동중국해 북부해역 하계 클로로필 a의 시공간 분포)

  • Kim, Sang-Woo;Lim, Jin-Wook;Jang, Lee-Hyun
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.85-95
    • /
    • 2008
  • Temporal and spatial variabilities of chlorophyll a (Chl-a) in the northern East China Sea (ECS) are described, using both 8-day composite images of the SeaWiFS (Sea-viewing Wide Field-of-view Sensor) and in-situ data investigated in August and September during 2000-2005. Ocean color imagery showed that Chl-a concentrations on the continental shelf within the 50 m depth in the ECS were above 10 times higher than those of the Kuroshio area throughout the year. Higher concentrations (above $5mg/m^3$) of yearly mean Chl-a were observed along the western part of the shelf near the coast of China. The standard deviation also showed the characteristics of the spatial variability near $122-124^{\circ}E$, where the western region of the East China Sea was grater than that of the eastern region. Particularly the significant concentration of Chl-a, up to $9mg/m^3$, was found at the western part of $125^{\circ}E$ in the in-situ data of 2002. The higher Chl-a concentrations of in-situ data were consistent with low salinity waters of below 30 psu. It means that there were the close relationship between the horizontal distribution of Chl-a and low salinity water.

Characteristics and Provenance of Heavy Minerals in the Yellow Sea and Northern East China Sea (황해 및 동중국해 북부의 중광물 특성과 기원)

  • Koo, Hyo Jin;Lee, Bu Yeong;Cho, Hyen Goo
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.505-515
    • /
    • 2020
  • The Yellow Sea and northern East China Sea contain a transgressive sand layer. Numerous sedimentary studies have been carried out in these sand deposits using seismic exploration and core sediment techniques, but few mineralogical studies have been reported. The major purposes of this study are to describe the distributions of heavy minerals throughout the Yellow sea and northern East China Sea and to identify the provenance of coarse sediments using the mineral chemistry. Eight heavy mineral species were identified in the study area (epidote, amphibole, garnet, zircon, sphene, rutile, apatite, and monazite). The study region was divided into six areas (areas A to F) based on heavy mineral distributions and sampling locations. In mineral chemistry, the amphiboles present are classified as edenite and hornblende in the calcic amphibole group, and the garnets are identified primarily as almandine in the pyralspite group. A combined data set of heavy mineral distributions and mineral chemistry showed clear differentiation of the characteristics of the six classified areas, enabling determination of provenance and sedimentary environment. Area A and B in the eastern Yellow Sea were originated from the Korean peninsula, and these regions showed different heavy mineral characteristics by tidal current and coastal current. In addition, monazite was only found in the area B and could be used as an indicator from the southwestern Korean peninsula. Area D and E in the western Yellow Sea showed the characteristics of sediments originating from the Huanghe, and sediment in the area E was derived from the Changjiang. Area C in the northern East China Sea appeared to have Changjiang-origin sediment, and abundant apatite indicated that area C was formed close to the Last Glacial Maximum.

Seasonal Variations in Nutrients and Chlorophyll-a Concentrations in the Northern East China Sea

  • Kim, Dong-Seon;Shim, Jeong-Hee;Yoo, Sin-Jae
    • Ocean Science Journal
    • /
    • v.41 no.3
    • /
    • pp.125-137
    • /
    • 2006
  • Nutrients, chlorophyll-a, particulate organic carbon (POC), and environmental conditions were extensively investigated in the northern East China Sea (ECS) near Cheju Island during three seasonal cruises from 2003 to 2005. In spring and autumn, relatively high concentrations of nitrate ($2.6{\sim}12.4\;{\mu}mol\;kg^{-1}$) and phosphate ($0.17{\sim}0.61\;{\mu}mol\;kg^{-1}$) were observed in the surface waters in the western part of the study area because of the large supply of nutrients from deep waters by vertical mixing. The surface concentrations of nitrate and phosphate in summer were much lower than those in spring and autumn, which is ascribed to a reduced nutrient supply from the deep waters in summer because of surface layer stratification. While previous studies indicate that upwellings of the Kuroshio Current and the Changjiang (Yangtze River) are main sources of nutrients in the ECS, these two inputs seem not to have contributed significantly to the build-up of nutrients in the northern ECS during the time of this study. The lower nitrate:phosphate (N:P) ratio in the surface waters and the positive correlation between the surface N:P ratio and nitrate concentration indicate that nitrate acts as a main nutrient limiting phytoplankton growth in the northern ECS, contrary to previous reports of phosphate-limited phytoplankton growth in the ECS. This difference arises because most surface water nutrients are supplied by vertical mixing from deep waters with low N:P ratios and are not directly influenced by the Changjiang, which has a high N:P ratio. Surface chlorophyll-a levels showed large seasonal variation, with high concentrations ($0.38{\sim}4.14\;mg\;m^{-3}$) in spring and autumn and low concentrations ($0.22{\sim}1.05\;mg\;m^{-3}$) in summer. The surface distribution of chlorophyll-a coincided fairly well with that of nitrate in the northern ECS, implying that nitrate is an important nutrient controlling phytoplankton biomass. The POC:chlorophyll-a ratio was $4{\sim}6$ times higher in summer than in spring and autumn, presumably because of the high summer phytoplankton death rate caused by nutrient depletion in the surface waters.

An Analytical Model with Three Sub-Regions for $M_2$ Tide in the Yellow Sea and the East China Sea

  • Jung, Kyung-Tae;Park, Chang-Wook;Oh, Im-Sang;So, Jae-Kwi
    • Ocean Science Journal
    • /
    • v.40 no.4
    • /
    • pp.191-200
    • /
    • 2005
  • In this study an analytical tide model of uniform width with three sub-regions is presented. The three-subregions model takes into account step-like variations in depths in the direction of the channel as a way to examine the $M_2$ tide of the East China Sea (ECS) as well as the Yellow Sea (YS). A modified Proudman radiation condition has been applied at the northern open head, while the sea surface elevation is specified at the southern open boundary. It is seen that, due to the presence of an abrupt change in depth, co-amplitude lines of the $M_2$ tide are splitted to the east and west near the end of the ECS shelf region. Variations in depths, bottom friction and the open head boundary conditions all contribute to the determination of formation of amphidromes as well as overall patterns of $M_2$ tidal distribution. It is seen that increasing water depth and bottom friction in the ECS shelf results in the westward shift of the southern amphidrome. There is however no hint at all of the well-known degenerated tidal pattern being formed. It is inferred that a lateral variation of water depth has to be somehow incorporated to represent the tidal patterns in ECS in a realistic manner. Regarding the radiation factor introduced by Fang et al. (1991), use of a value larger than one, possibly with a phase shift, appears to be a proper way of incorporating the reflected waves from the northern Yellow Sea (NYS).

Picocyanobacterial Diversity and Distribution During Summer in the Northern East China Sea (하계 동중국해 북부 해역에서 초미소남세균의 다양성 및 분포 양상)

  • Choi, Dong-Han
    • Ocean and Polar Research
    • /
    • v.34 no.1
    • /
    • pp.19-28
    • /
    • 2012
  • In order to understand the spatial distribution of picocyanobacterial diversity during the summer in the northern East China Sea (ECS), their abundance and genetic diversity were investigated using flow cytometry and barcoded amplicon pyrosequencing of 16S-23S internal transcribed spacer sequences. Synechococcus abundance was high, with a range of $0.2{\times}10^5$ to $1.8{\times}10^5$ cells $ml^{-1}$. However, Prochlorococcus were found only in the eastern part of the studied area, showing a marked variation among stations [range of n.d. (not detected) to $3.3{\times}10^4$ cells $ml^{-1}$]. Eleven Synechococcus clades and five Prochlorococcus ecotypes were found to have a proportion higher than 1% among picocyanobacterial sequences, indicating high picocyanobacterial diversity in the ECS. The picocyanobacterial compositions were markedly different among stations, as well as among depths. Inflow of the Tsushima Warm Current and Changjiang diluted water was of primary importance in determining picocyanobacterial lineage diversity in the studied area. In addition, light intensity and nutrient conditions also appeared to be important in the vertical and horizontal distribution of picocyanobacterial diversity.

Mass Occurrence of the Salp Salpa fusiformis during Spring 2017 in the Southern Waters of Korea and the Northern East China Sea (2017년 봄철 한국 남해와 북부동중국해의 살파 Salpa fusiformis 대량 출현)

  • Kang, Hyung-Ku;Kim, Garam;Kang, Jung-Hoon;Kim, Minju;Noh, Jae Hoon
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.135-145
    • /
    • 2019
  • We investigated the mass occurrence of the salp Salpa fusiformis during spring in the southern waters of Korea and the northern East China Sea. Abundance of S. fusiformis and dominant taxonomic groups including copepods, ostracods, euphausiids, and appendicularian was examined along with environmental factors (e.g., temperature, salinity, and chlorophyll-a concentration). The abundance of S. fusiformis at 27 stations ranged from 0 to $183\;inds\;m^{-3}$. Both aggregate and solitary forms of S. fusiformis occurred with a mean abundance of $62\;inds\;m^{-3}$ and $4\;inds\;m^{-3}$, and mean body length of 6.5 mm and 15.4 mm, respectively. Redundancy analysis showed that the abundance of S. fusiformis was negatively correlated with chlorophyll-a concentration, indicating the intensive grazing impact of S. fusiformis on phytoplankton. While the abundance of S. fusiformis increased, the species diversity of zooplankton community decreased. The abundances of total copepods and the dominant copepod species (e.g., adults and/or copepodites of Paracalansus parvus s.l., Calanus sinicus, Oithona similis, and Corycaeus affinis) also decreased with the increase of S. fusiformis abundance. However, the abundance of ostracods, euphausiids, and appendicularians was not affected by the mass occurrence of the salps. These results suggest that the mass occurrence of S. fusiformis in spring could negatively affect ecosystem conditions by changing trophodynamics in the zooplankton community.

Study on the Korean Waters using the CAL/VAL of the OSMI Level 2 Data

  • Suh, Young-Sang;Jang, Lee-Hyun;Mitchell, B.G.;Kahru, M.;Prasad, Kota;Shin, H.Y.
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.127-139
    • /
    • 2002
  • A comparison was made between the chlorophyll $\alpha$ and suspended solid (SS) retrievals from OSMI and SeaWiFS sensor to chlorophyll $\alpha$ and SS values determined with the standard method during the NFRDI's research cruises. The percentage of organic and inorganic materials from the SS was calculated to study the contribution of turbid water in the northern part of the East China Sea. The open sea waters in the Kuroshio regions of the East China Sea showed relatively higher concentration of volatile SS. However, towards the northwestern part of the East China Sea, the situation became much more optically different with the non-volatile SS from the Yangtze river and the sea bottom sources in the sea in winter and spring seasons. Furthermore, in order to indirectly detect low salinity water with high turbidity, which related to the Yangtze river using remote sensed data from the satellites, a comparison between the results of the band ratio(nLw 490nm/nLw 555nm) of SeaWiFS(OSMI) and the distribution of low salinity around the Jeju Island was presented.

Morphological and Genetic Stock Identification of Todarodes pacificus in Korean Waters (한국 주변해역에 서식하는 살오징어(Todarodes pacificus)의 형태 및 유전학적 계군분석)

  • Kim, Jeong-Yun;Yoon, Moon-Geun;Moon, Chang-Ho;Kang, Chang-Keun;Choi, Kwang Ho;Lee, Chung Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.131-141
    • /
    • 2013
  • Stock identification of Todarodes pacificus collected in the East Sea, Yellow Sea and East China Sea during the period from September to December in 2011 was analyzed by morphometric characters and mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) gene nucleotide variations. Frequency distributions of mantle length was analyzed by morphological method with measuring size of T. pacificus. Then each stock was estimated to confirm their maturation for mean mantle length comparing with mean mature mantle length 20-22 cm. According to morphologic stock identification, it is estimated that the northern part of East Sea is categorized as summer stock and the rest parts, including mid /southern part of the East Sea, northern part of the East China Sea and northern part of the West Sea were autumn stock. For genetic analysis, a total 49 haplotypes were defined by 33 variable nucleotide sites. From the extensive haplotype diversity, limited nucleotide diversity and star-like shape of haplotype network, T. pacificus appears to have undergone rapid population expansion from an ancestral population with a small effective population size. Although pair-wise Fst estimates which represent genetic difference among groups were low, there are relatively remarkable difference of Fst between middle and southern part of the East Sea. Although middle part of the East Sea and southern part of the East Sea were situated at the East Sea, genetically separated groups were appeared.

Seasonal Characteristics of Todarodes pacificus Paralarval Distribution in the Northern East China Sea (북부 동중국해 살오징어(Todarodes pacificus) 유생분포의 계절특성)

  • Kim, Jung Jin;Kim, Cheol-Ho;Lee, Joon-Soo;Kim, Suam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.1
    • /
    • pp.59-61
    • /
    • 2014
  • We conducted eight surveys in the northern East China Sea (ECS) in winter (February - April), summer (July), and autumn (October) 2004-2009, to investigate the seasonal distribution of T. pacificus. A total of 482 paralarvae, ranging in mantle length (ML) from 1.0 - 17.0 mm, were collected at 73 out of 181 stations. There were higher numbers of paralarvae during the winter and summer months than in the autumn. There was significant seasonal variation in the paralarval mantle lengths; mantle lengths were longer in winter (April) than in summer (July). The position of oceanic fronts in the study area played an important role in restricting paralarval distribution along the inshore edge of the Tsushima Warm Current (TWC). When the TWC expanded to western Jeju Island in winter and autumn, the paralarval distribution range extended to include western Jeju Island. However, when the TWC was located southeast of Jeju Island in the summer, paralarvae were distributed along the frontal zone off southeast Jeju Island. Sites at which paralarval mantle length was <2.0 mm ML indicated that the spawning ground were likely to be within the northern ECS in winter and summer, but north of the study area in autumn.

Calibration and validation of the level 2 data of the Korean OSMI ocean color satellite

  • Suh, Y.S.;Jang, L.H.;Lee, N.K.;Lim, H.S.;Kim, Y.S.;Ahn, Y.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.703-705
    • /
    • 2003
  • A comparison was made between the chlorophyll a and suspended solid (SS) retrievals from OSMI and SeaWiFS sensor to chlorophyll a and SS values determined with the standard method during the NFRDI's research cruises. The percentage of organic and inorganic materials from the SS was calculated to study the contribution of turbid water in the northern part of the East China Sea. The open sea waters in the Kuroshio regions of the East China Sea showed relatively higher concentration of volatile SS. However, towards the northwestern part of the East China Sea, the situation became much more optically different with the non-volatile SS from the Yangtze river and the sea bottom sources in the sea in winter and spring seasons. Furthermore, in order to indirectly detect low salinity water with high turbidity, which related to the Yangtze river using remote sensed data from the satellites, a comparison between the results of the band ratio(nLw 490nm/nLw 555nm) of SeaWiFS (OSMI) and the distribution of low salinity around the Jeju Island was presented.

  • PDF