• Title/Summary/Keyword: Northerly wind

Search Result 53, Processing Time 0.032 seconds

On the Wintertime Wind-driven Circulation in the Yellow Sea and the East China Sea : Part I. Effect of Tide-induced Bottom Friction (황해.동중국해의 겨울철 취송 순환에 대하여: Part I. 조류에 의한 저면 마찰력의 영향)

  • Lee, Jong-Chan;Kim, Chang-Shik;Jung, Kyung-Tae;Jun, Ki-Cheon
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.361-371
    • /
    • 2003
  • The effect of bottom friction on the steady wind-driven circulation in the Yellow Sea and the East China Sea (YSECS) has been studied using a two-dimensional numerical model with and without tidal forcing. Upwind flow experiment in YSECS has also been carried out with a schematic time variation in the wind field. The surface water setup and circulation pattern due to steady wind forcing are found to be very sensitive to the bottom friction. When the effects of tidal currents are neglected, the overall current velocities are overestimated and eddies of various sizes appear, upwind flow is formed within the deep trough of the Yellow Sea, forming a part of the topographic gyre on the side of Korea. When tidal forcing is taken into account, the wind-induced surface elevations are smoothed out due to the strong tide-induced bottom friction, which is aligned almost normal to the wind stresses; weak upwind flow is farmed in the deep trough of the Yellow Sea, west and south of Jeju. Calculation with wind forcing only through a parameterized linear bottom friction produces almost same results from the calculation with $M_2$ tidal forcing and wind forcing using a quadratic bottom friction, supporting Hunter (1975)'s linearization of bottom friction which includes the effect of tidal current, can be applied to the simulation of wind-driven circulation in YSECS. The results show that steady wind forcing is not a dominant factor to the winter-time upwind flow in YSECS. Upwind flow experiment which considers the relaxation of pressure gradient (Huesh et al. 1986) shows that 1) a downwind flow is dominant over the whole YSECS when the northerly wind reaches a maximum speed; 2) a trend of upwind flow near the trough is found during relaxation when the wind abates; 3) a northward flow dominates over the YSECS after the wind stops. The results also show that the upwind flow in the trough of Yellow Sea is forced by a wind-induced longitudinal surface elevation gradient.

Air Pollution Monitoring in Taiwan: An Application of Tethersonding in Coastal Central Taiwan

  • Cheng Wan-Li;Hsu C. H.;Huang J. D.;Shi J. L.
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.3
    • /
    • pp.215-220
    • /
    • 2005
  • The atmospheric transportation and dispersion processes of air pollutants are important issues in dealing with air pollution problems. Air pollutants originated from biological and anthropogenic activities are not only limited to the local emission sources, but could also be transported and dispersed to other regions by synoptic weather systems. Besides, the complexity of topography of central Taiwan helps accumulating air pollutants to promote high-concentration episodes. The techniques of tethersonding were applied to monitor the vertical profiles of winds, air temperatures and humidity, as well as to collect air samples, to be analyzed for pollutants $(O_3,\;NO_2,\;NO\;and\; NMHC)$ from the ground up to 1000m. A time period of about one week, 19-26 October 2002, was chosen as the sampling period due to the high frequency of episode occurrence in autumn based on the past records. Associating with the analysis of weather patterns, the atmospheric characteristics over high-concentration areas can be resolved in more detail. The result of the tethersonding studies showed that weak northerly sea breeze (with thickness about 300m) with low wind speed (about 1 to 2 m/sec) could help develop high ozone concentrations in the down-wind areas. It is also important to have a built-up aloft of precursors and ozone to develop high concentration on the previous day.

Air Pollution Monitoring in Taiwan: An Application of Tethersonding in Coastal Central Taiwan

  • Cheng, Wan-Li
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.184-210
    • /
    • 2005
  • The atmospheric transportation and dispersion processes of air pollutants are important issues in dealing with air pollution problems. Air pollutants originated from biological and anthropogenic activities are not only limited to the local emission sources, but could also be transported and dispersed to other regions by synoptic weather systems. Besides, the complexity of topography of central Taiwan helps accumulating air pollutants to promote high-concentration episodes. The techniques of tethersonding were applied to monitor the vertical profiles of winds, air temperatures and humidity, as well as to collect air samples, to be analyzed for pollutants ($O_3,\;NO_2$, NO and NMHC) from the ground up to 1000 m. A time period of about one week, 19 -26 October 2002, was chosen as the sampling period due to the high frequency of episode occurrence in autumn based on the past records. Associating with the analysis of weather patterns, the atmospheric characteristics over high-concentration areas can be resolved in more detail. The result of the tethersonding studies showed that weak northerly sea breeze (with thickness about 300 m) with now wind speed (about 1 to 2 m/sec) could help develop high ozone concentrations in the down-wind areas. It is also important to have a built-up aloft of precursors and ozone to develop high concentration on the previous day.

  • PDF

Climatological Analysis of Fog Occurrence at Chuncheon (춘천지방에서 발생한 안개 특성 분석)

  • Baek, Seung-Joo;Lee, Kwi-Ok;Leem, Heon-Ho;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.583-591
    • /
    • 2007
  • In this study, meteorological characteristics concerning the occurrence of fog are analyzed using 4-years (2000-2003) data at Chuncheon. From the analysis of meteorological characteristics, the fog at Chuncheon occurred before sunrise time and disappeared after that time and lasted for 2-4 hours. When fog occurred, on the whole, wind direction was blew the northerly and wind speed was below 2.1 m/s. Especially, about 42 % of foggy day fell on the calm($0{\sim}0.2m/s$) conditions. The difference between air temperature and dew point temperature near the surface were mainly less than $2^{\circ}C$. For the lack of water surface temperature, the water sur-face temperature was calculated by using Water Quality River Reservoir System (WQRRS). In Chuncheon, there is close correlation between the frequency of fog day and outflow from Soyang reservoir and high frequency of occurrence due to the difference between air and cold outlet water temperature.

The Characteristics of Radiation, Temperature and Wind Direction around King Sejong Station, Antarctica (남극 세종 기지 주변의 복사, 기온 및 풍향의 특징)

  • Choi, Tae-Jin;Lee, Bang-Yong;Kim, Seong-Joong;Park, Yoo-Min;Yoon, Young-Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.397-408
    • /
    • 2006
  • Due to the temporal and spatial variability of the warming at and near the Antarctic Peninsular, it is required to better understand local climate at the issued region. The purpose of the study are to characterize surface radiation, air temperature and wind direction and investigate their relations at the King Sejong Station near the Antarctic Peninsular during last three and half years. While the study site was a weak radiative energy sink (positive net radiation) with annual mean of 15-20 Wm-2, it played a role as a strong sink in summer (December to January) with mean of 85 Wm-2, a magnitude that was significantly larger than those at other surface covered with snow or ice in Antarctica. Monthly averaged air temperature ranged from -7.7-2.8oC and the variations of monthly averaged air temperature showed the distinct differences with year. Northwesterly, westerly and easterly were dominant and the variability of air temperature could be explained by the variability of the frequency of wind direction with cold easterly and warm northwesterly/northerly to some degree, which in turn influenced radiation budget through albedo in summer.

  • PDF

Application of a Convolution Method for the Fast Prediction of Wind-Induced Surface Current in the Yellow Sea and the East China Sea (표층해류 신속예측을 위한 회선적분법의 적용)

  • 강관수;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.265-276
    • /
    • 1995
  • In this Paper, the Performance of the convolution method has been investigated as an effort to develop a simple system of predicting wind-driven surface current on a real time basis. In this approach wind stress is assumed to be spatially uniform and the effect of atmospheric pressure is neglected. The discrete convolution weights are determined in advance at each point using a linear three-dimensional Galerkin model with linear shape functions(Galerkin-FEM model). Four directions of wind stress(e.g. NE, SW, NW, SE) with unit magnitude are imposed in the model calculation for the construction of data base for convolution weights. Given the time history of wind stress, it is then possible to predict with-driven currents promptly using the convolution product of finite length. An unsteady wind stress of arbitrary form can be approximated by a series of wind pulses with magnitude of 6 hour averaged value. A total of 12 pulses are involved in the convolution product To examine the accuracy of the convolution method a series of numerical experiments has been carried out in the idealized basin representing the scale of the Yellow Sea and the East China Sea. The wind stress imposed varies sinusoidally in time. It was found that the predicted surface currents and elevation fields were in good agreement with the results computed by the direct integration of the Galerkin model. A model with grid 1/8$^{\circ}$ in latitude, l/6$^{\circ}$ in longitude was established which covers the entire region of the Yellow Sea and the East China Sea. The numerical prediction in terms of the convolution product has been carried out with particular attention on the formation of upwind flow in the middle of the Yellow Sea by northerly wind.

  • PDF

Distribution Characteristics and Background Air Classification of PM2.5 OC and EC in Summer Monsoon Season at the Anmyeondo Global Atmosphere Watch (GAW) Regional Station (안면도 기후변화감시소의 여름철 PM2.5 OC와 EC 분포 특성 및 배경대기 구분)

  • Ham, Jeeyoung;Lee, Meehye;Ryoo, Sang-Boom;Lee, Young-Gon
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.429-438
    • /
    • 2019
  • Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured with Sunset Laboratory Model-5 Semi-Continuous OC/EC Field Analyzer by NIOSH/TOT method at Anmyeondo Global Atmosphere Watch (GAW) Regional Station (37°32'N, 127°19'E) in July and August, 2017. The mean values of OC and EC were 3.7 ㎍ m-3 and 0.7 ㎍ m-3, respectively. During the study period, the concentrations of reactive gases and aerosol compositions were evidently lower than those of other seasons. It is mostly due to meteorological setting of the northeast Asia, where the influence of continental outflow is at its minimum during this season under southwesterly wind. While the diurnal variation of OC and EC were not clear, the concentrations of O3, CO, NOx, EC, and OC were evidently enhanced under easterly wind at night from 20:00 to 8:00. However, the high concentration of EC was observed concurrently with CO and NOx under northerly wind during 20:00~24:00. It indicates the influence of thermal power plant and industrial facilities, which was recognized as a major emission source during KORUS-AQ campaign. The diurnal variations of pollutants clearly showed the influence of land-sea breeze, in which OC showed good correlation between EC and O3 in seabreeze. It is estimated to be the recirculation of pollutants in land-sea breeze cycle. This study suggests that in general, Anmyeondo station serves well as a background monitoring station. However, the variation in meteorological condition is so dynamic that it is primary factor to determine the concentrations of secondary species as well as primary pollutants at Anmyeondo station.

Composition and Characteristics of ionic Components of Aerosols Collected at Gosan Site in Jeiu Island, Korea

  • Kang, Chang-Hee;Kim, Won-Hyung;Hu, Chul-Goo;Kim, Yong-Pyo;Shim, Shang-Gyoo;Hong, Min-Sun;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E4
    • /
    • pp.177-186
    • /
    • 2003
  • The total of 1,454 aerosol samples were collected by high volume tape sampler at the Gosan Site in Jeju Island from 1992 to 1999, and the major water-soluble ionic components were chemically analyzed. The mean concentrations of nss-S $O_4$$^{2-}$, N $H_4$$^{+}$, and N $O_3$$^{[-10]}$ showed high values, which were 6.73, 1.45, and 1.45 ${\mu}{\textrm}{m}$/㎥, respectively, while $Ca^{2+}$ and $K^{+}$ concentrations were low with the values of 0.49 and 0.42 $\mu\textrm{g}$/㎥. The concentrations of most components increased in spring but decreased in summer, especially with the remarkable increase of $Ca^{2+}$ and N $O_3$$^{[-10]}$ concentrations in spring. The seasonal comparison of nss-S $O_4$$^{2-}$ concentrations showed higher values with the order of spring > fall 〉 winter〉 summer, but spring 〉 winter〉 fall 〉 summer for N $O_3$$^{[-10]}$ Meanwhile, the concentration levels of N $a^{+}$ and C $l^{[-10]}$ increased more in winter season. According to the investigation of wind direction effect, the concentrations of most aerosol ionic components showed higher values consistently at the westerly and northerly wind conditions. Based on the factor analysis, the atmospheric aerosols in the Gosan Site are considered to be largely affected by marine sources, followed by anthropogenic and soil sources.urces..

Occurrence Characteristics of Sea Breeze in the Gangneung Region for 2009~2018 (강릉지역 2009~2018년 해풍 발생 특성)

  • Hwang, Hyewon;Eun, Seung-Hee;Kim, Byung-Gon;Park, Sang-Jong;Park, Gyun-Myeong
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.221-236
    • /
    • 2020
  • The Gangneung region has the complicated geographical characteristics being adjacent to East Sea and Taeback mountains, and thus sea breeze could play an important role in local weather in various aspects. This study aims to understand overall characteristics of sea breeze largely based on long-term (2009~2018) ground-based observation data. We also propose a selection criteria of sea breeze occurrence day; 1) daily precipitation is less than 10 mm, 2) surface wind direction is 0~110° (northerly to easterly) for more than 3 hours during the daytime, 3) wind direction is 110~360° for more than 3 hours during the nighttime, and 4) land and sea temperature difference is positive during the daytime, 5) sea and land sea-level pressure difference is more than 0.5 hPa. As a result, a total of 595 days was selected for the past 10 years. The occurrence of sea breeze is the highest in late Spring to early Summer (May to June). The passage time of sea breeze at the inland station (1.6 km farther inland) is one hour later than the coastal station. On the typical sea breeze event of April 12, 2019, the passage speed and duration of sea breeze was 15 km hr-1 and about 9 hours, respectively, with its depth of about 500 m and its head swelling. The current results emphasize the critical role of sea breeze in forecasting surface temperature and wind, and contribute to relieve heat wave especially in summer in the Yeongdong region.

Numerical Simulation of the Circulation and Suspended Materials Movement in the Yellow Sea and the East China Sea by Tidal Residual and Wind-Driven Current (조석잔차류와 해상풍에 의한 황해와 동중국해의 해수 순환과 부유물 이동 모델 연구)

  • Jeon, Hye-Jin;An, Hui-Soo
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.529-539
    • /
    • 1997
  • The circulations and movement of suspended materials by tidal residual current and seasonal surface wind in the Yellow Sea and the East China Sea are investigated by using a 2-dimensional barotropic model and a particle tracing technique. The tidal residual current is relatively strong around the south and west coast of Korea including the Cheju Island and southern coast of China. The current has a maximum speed of 10 cm/s in the vicinity of Cheju Island with a clockwise circulation. General tendency of the current, however, is to flow eastward along the southern coast of Korea. At the east coast of China from Shanghai to Tunghai, it also shows a eastward flow toward the South Sea of Korea. The anticyclonic circulation formed by wind-driven current and southward current prevails along the coast of Korea in the winter season(from October to April) when northerly wind is dominant. In summer(represented by July), however, the cyclonic circulation appears due to the influence of southerly wind. Suspended materials are advected by tidal residual current and wind-driven current. The long period(ten days) displacement by wind-driven current is bigger than that by tidal residual current. However, the tidal residual current would have the more important role for the advection of the suspended material considering longer period more than several months.

  • PDF