• Title/Summary/Keyword: North American ginseng

Search Result 35, Processing Time 0.031 seconds

SOIL AND MULCH EFFECTS ON GINSENOSIDES IN AMERICAN GINSENG PLANTS (토양과 부초가 미국 인삼 진세노사이드에 미치는 영향)

  • Zito Santo W.;Konsler Thomas R.;Staba E.John
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.57-62
    • /
    • 1984
  • Four year old American ginseng plants (Panax quinquefolium L.) were grown in control and treated field plots in North Carolina, USA. Soil pH (4.4, 5.5, and 6.5), soil phosphate (19, 89 and 232 ppm) and mulch treatments (wheat straw, pine needle straw, poplar bark, oak bark, pine bark and hardwood leaves) were studied for their effects on total dry weight, total ginsenosides and 5 individual ginsenosides (A1, Rg1, Rd, Re, and Rb2). The leaf and root tissue were analyzed for ginsenosides by high pressure liquid chromatography (HPLC). The oak and poplar bark mulch treatments appeared to have the best effect upon the growth and production of roots while not significantly decreasing the ginsenoside content of the roots. The oak mulch showed a statistical increase in the ginsenoside content of the leaves.

  • PDF

Evaluation of Herbicides for Management of Weeds in Cultivation of Panax quinquefolius L.

  • B Capell;R.D Reeleder;R Grohs;B Zilkey
    • Journal of Ginseng Research
    • /
    • v.23 no.3 s.55
    • /
    • pp.135-147
    • /
    • 1999
  • Nine herbicide products (fluazifop-p-butyl, clethodim, MCPA-sodium, 2,4-0 amine, chlorthal dimethyl, diquat, glyphosate, ethalfluralin and oryzalin) were evaluated for use on ginseng (Panax quinquefolius). Products varied in their ability to suppress weeds and certain materials were phytotoxic to ginseng in some trials. Chlorthal dimethyl (broadleaf weeds), MCPA-sodium (broadleaf weeds), fluazifop-p-butyl (grass weeds), and clethodim (grass weeds) were found to be effective as weed control agents and did not adversely affect ginseng growth. Other products tested were either not efficacious or were phytotoxic to ginseng in some trials. Weed populations were mainly introduced into the planting sites via the straw mulches used in ginseng cultivation.

  • PDF

Overview of World Ginseng Production (세계 인삼 생산의 개요)

  • Ference, Don
    • Journal of Ginseng Research
    • /
    • v.15 no.2
    • /
    • pp.152-165
    • /
    • 1991
  • It is estimated that world ginseng production has increased from 3,200 tonnes In 1983 to 5,132 tonnes in 1987. China produced approximately hart of world ginseng production and South Korea's production amounts to 31.9% of world ginseng production. Canadian ginseng production of 114 tonnes in 1987 represents only 2.2% of estimated world production. World ginseng production is projected to increase to 6,856 tonnes by 1992. Canadian production as a proportion of total world production is expected to increase to 3.3% however, North American production overall is projected to decrease 12.0% of world production by 1992. Assuming that the value of each country's production is equal to average export price, the value of world ginseng production is estimated to be $ 443 million The estimated values of Korean, North Anerican and Canadian ginseng production represent $ 198.3million, 977.1 million, and $ 12.5 million, redpectively.

  • PDF

In Vitro Flower Abscission Induction in North American Ginseng

  • Campeau Cindy;Proctor John T. A.
    • Journal of Ginseng Research
    • /
    • v.29 no.2
    • /
    • pp.71-79
    • /
    • 2005
  • In vitro studies using detached inflorescences with peduncles were conducted to investigate flower abscission agents in North American ginseng (Panax quinquefolius L.). Of the nine compounds studied only three, ammonium thiosulphate (ATS), abscisic acid (ABA) and ethephon induced abscission. Anilazine, benzyladenine, carbaryl, gibberellic acid, napthaleneacetic acid and thidiazuron did not induce abscission. ATS dip treatments did not induce abscission but the spray treatments induced $60.5\%$ abscission at $1500\;mg{\cdot}L^{-1}$ and $33.1\%$ at $3000\;mg{\cdot}L^{-1}$. Severe chlorophyll loss occurred on all inflorescences treated with ATS. Both ABA dip treatments and a $250\;{\mu}mol{\cdot}L^{-1}$ spray treatment caused abscission $(40\%)$ without adverse effects, and timing of ABA application was important. Because ABA was only significant in the dip treatments, ABA may not be a practical option for field use on ginseng. Ethephon sprays induced more abscission as the season progressed and as the concentration increased. As the dip concentrations of ethephon increased, the abscission rate decreased and the health of the inflorescences declined. The $1500\;mg{\cdot}L^{-1}$ spray of ethephon gave consistent abscission results over the glowing season with little phytotoxicity. Treatment with the competitive ethylene inhibitor 1-methylcy-clopropene (1-MCP) suggested that flower abscission was due to the liberation of ethylene from the breakdown of ethephon.

Morphological and Ginsenoside Differences among North American Ginseng Leaves

  • Proctor, John T.A.;Sullivan, Alan J.;Rupasinghe, Vasantha P.V.;Jackson, Chung-Ja C.
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.155-161
    • /
    • 2011
  • Leaf characteristics of mature 2, 3 and 4-year-old North American ginseng (Panax quinquefolius L.) leaves on fruiting and non-fruiting(NF) plants were studied. Leaflets of the 2-year-old plants had the lowest fresh and dry weight, area, volume and internal gas volume. Inflorescence removal in 3-year-old plants did not affect leaf characteristics or ginsenoside concentration but in 4-year-old plants it increased leaf fresh (38.6%) and dry (43.9%) weight, leaf area (29.1%), specific leaf mass (11.4%), leaf volume (43.1%), and leaf thickness (12.1%), and decreased leaf water content (6.2%). Cultivated ginseng, although an understorey plant, had the specific leaf mass, 35.6 g $m^{-2}$ (range, 36 to 39 g $m^{-2}$) and a chlorophyll a/b ratio of 2.40 to 2.61, both suggesting the ability to perform like a sunny habitat plant. Also, specific leaf mass of 35.6 g $m^{-2}$ is similar to that reported for perennial plants, 36.8 g $m^{-2}$, rather than that for annuals, 30.9 g $m^{-2}$.

Reinforcements of the International Competitiveness in Korean Ginseng

  • Seo, Min-Jun;Cho, Young-Mook;Choi, Sun-Kyung;Kim, Na-Hyun;Lee, Ki-Taeg;Park, Jin-Han
    • Journal of Evidence-Based Herbal Medicine
    • /
    • v.2 no.2
    • /
    • pp.33-38
    • /
    • 2009
  • Korean Ginseng has been recognized as a representative special product in Korea and over the world for a long time, since its quality is known to be superior to Chinese, North American Ginseng. However, the export volume of Korean Ginseng products has been diminishing since 1990 because the imports of low price Chinese Ginseng and the effective marketing policy on North American Ginseng. Therefore, this study is to suggest the competitiveness reinforcement strategies through analyses of the present state and transition of the international competitiveness in Korean Ginseng. This study conducts the comparative analysis of international competitive power of ginseng between Korea and other exporting countries. There are many kinds of saponin that are competitive from a quality profile. However, price competitiveness was very low. According to the result of analysis, this study suggest the competitiveness reinforcement strategies of Korean Ginseng as follows ; First, it is necessary to establish the ginseng plan for high-quality environmentally-friendly production. Second, Korean Ginseng producer should develop various consumer-oriented products according to purchasing power and taste of target market consumers. Third, export strategies must be established by finding out every importing country’s characteristics with regard its import, circulation and consumption of the Korean Ginseng. The use of this study is to forecast useful information to concerned organization for the future policies to the ginseng products in the international market.

  • PDF

Gibberellin Effects on Inflorescence Development, Bud Dormancy and Root Development in North American Ginseng

  • Rolston, L.J.;Proctor, J.T.A.;Fletcher, R.A.;Murr, D.P.
    • Journal of Ginseng Research
    • /
    • v.26 no.1
    • /
    • pp.17-23
    • /
    • 2002
  • Gibberellic acid (GA) was applied to field-grown 3-year-old North American ginseng (Panax quinqueiolius L.) between 1 and 4 times, before and during bloom in 1999. Applications of both GA$_3$ and GA$\sub$4+7/ four times (x4) to the developing inflorescences increased maximum pedicel length, and seed head diameter and height. Treatment with GA$\sub$4+7/ increased mean and total root fresh weight linearly, whereas those treated with GA$_3$ did not show similar increases. Both GA$_3$ and GA$\sub$4+7/ at 50, 100 and 200 mg L$\^$-1/ (x4) increased the incidence of breaking of dormancy of perennating buds with GA$_3$ being twice as effective as GA$\sub$4+7/. Both GA$_3$ and GA$\sub$4+7/ treatments resulted in an increased number of new bud initials forming per root, with the number of new initials per root increased two-fold by the GA$_3$ sprays compared to GA$\sub$4+7/.

American Ginseng: Research Developments, Opportunities, and Challenges

  • Punja, Zamir K.
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.368-374
    • /
    • 2011
  • American ginseng (Panax quinquefolius L.) is grown in some regions of the USA and Canada and marketed for its health promoting attributes. While cultivation of this plant species has taken place in North America for over 100 years, there are many challenges that need to be addressed. In this article, the current production method used by growers is described and the challenges and opportunities for research on this valuable plant are discussed. These include studies on pharmacological activity, genetic diversity within the species, genetic improvement of currently grown plants, molecular characterization of gene expression, and management of diseases affecting plant productivity. The current research developments in these areas are reviewed and areas requiring further work are summarized. Additional research should shed light on the nature of the bioactive compounds and their clinical effects, and the molecular basis of active ingredient biosynthesis, and provide more uniform genetic material as well as improved plant growth, and potentially reduce losses due to pathogens.

The Adaptation of Ginseng Production of Semi-arid Environments The Example of British Columbia, Canada

  • Bailey, W.G.
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.155-167
    • /
    • 1990
  • Ginseng Is renowned for both its medicinal and herbal uses and successful cultivation of Panax ginseng in Asia and Panax quinquefolium in North America has until recently taken place in the native geographical ranges of the plants. As a consequence of the potential high capital return and anticipated increases in consumer consumption, commercial cultivation of American ginseng now occurs well outside the native range of the plant in North America. In fact, the region of greatest expansion of cultivation is in the semi-arid interior region of British Columbia, Canada. Linked with this expansion is the potential domination of the ginseng industry by agricultural corporations. In the interior of British Columbia, the native deciduous forest environment of eastern North America is simulated with elevated polypropylene shade and a surface covering of straw mulch. The architecture of these environments is designed to permit maximum machinery usage and to minimize labor requirements. Further, with only a four- years growth cycle, plant densities in the gardens are high. In this hot, semi-arid environment, producers believe they have a competitive advantage over other regions in North America because of the low precipitation rates. This helps to minimize atmospheric humidity such that the conditions for fungal disease development are reduced. If soil moisture level become limited, supplemental water can be provided by irrigation. The nature of the radiation and energy balance regimes of the shade and many environments promotes high soil moisture levels. Also, the modified environment redlines soil heating. This can result in an aerial environment for the plant that is stressful and a rooting zone environment that is suloptimal. The challenge of further refining the man modified environment for enhanced plant growth and health still remains. Keywords Panax ginseng, Panax quinquefolium, cultivation, ginseng production.

  • PDF

Pharmacological Viewpoint Concerns and Phytochemical Components of Ginseng

  • RANA, Anvi
    • The Korean Journal of Food & Health Convergence
    • /
    • v.8 no.5
    • /
    • pp.21-28
    • /
    • 2022
  • Ginseng is described as the "King of all herbs, "Man-root" or "Root of heaven" and regarded as the most powerful herbal remedy, particularly grown in Korea, China, Japan, Vietnam, and North America. It has been in existence for a long time. The most demanded herbal cure, Ginseng, principally the root, has long been employed in traditional Asian medicine. The extent of availability of bioactive combinations and their impact on the body differs between American and Asian ginseng. Asian ginseng, also known as Panax ginseng, has a more calming influence and is more advantageous than American ginseng, such as Panax quinquefolius. The pharmaceutical aspect of development and extraction with diverse morphological properties is examined. Saponins, glycosides, carbohydrates, polyacetylenes, amino acids, vitamins, volatile oil, enzymes are all present in the Phyto-content of Ginseng. Ginsenosides are saponins that are constituents of the triterpenoid dammarane and have anticancer, anti-cardiovascular, anti-microbial, anti-obesity, anti-inflammatory, and antioxidant properties. Ginseng, in particular, has the possibility to help with microbial invasion, inflammatory processes, oxidative stress, and diabetes. It developed nanoparticles and nanocomposite film technologies as novel drug delivery platforms for cancer, inflammation, and neurological illnesses. Furthermore, it offers a range of applications that will be vital for future growth.