• Title/Summary/Keyword: Normalized motion vector

Search Result 10, Processing Time 0.023 seconds

A new approach for content-based video retrieval

  • Kim, Nac-Woo;Lee, Byung-Tak;Koh, Jai-Sang;Song, Ho-Young
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.24-28
    • /
    • 2008
  • In this paper, we propose a new approach for content-based video retrieval using non-parametric based motion classification in the shot-based video indexing structure. Our system proposed in this paper has supported the real-time video retrieval using spatio-temporal feature comparison by measuring the similarity between visual features and between motion features, respectively, after extracting representative frame and non-parametric motion information from shot-based video clips segmented by scene change detection method. The extraction of non-parametric based motion features, after the normalized motion vectors are created from an MPEG-compressed stream, is effectively fulfilled by discretizing each normalized motion vector into various angle bins, and by considering the mean, variance, and direction of motion vectors in these bins. To obtain visual feature in representative frame, we use the edge-based spatial descriptor. Experimental results show that our approach is superior to conventional methods with regard to the performance for video indexing and retrieval.

ON THE THEORY OF LORENTZ SURFACES WITH PARALLEL NORMALIZED MEAN CURVATURE VECTOR FIELD IN PSEUDO-EUCLIDEAN 4-SPACE

  • Aleksieva, Yana;Ganchev, Georgi;Milousheva, Velichka
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1077-1100
    • /
    • 2016
  • We develop an invariant local theory of Lorentz surfaces in pseudo-Euclidean 4-space by use of a linear map of Weingarten type. We find a geometrically determined moving frame field at each point of the surface and obtain a system of geometric functions. We prove a fundamental existence and uniqueness theorem in terms of these functions. On any Lorentz surface with parallel normalized mean curvature vector field we introduce special geometric (canonical) parameters and prove that any such surface is determined up to a rigid motion by three invariant functions satisfying three natural partial differential equations. In this way we minimize the number of functions and the number of partial differential equations determining the surface, which solves the Lund-Regge problem for this class of surfaces.

Sub-Pixel Motion Estimation by Using Only integ-Pixel (고속 보간 법을 이용한 Super-Resolution 복원 기법)

  • Cho, Hyo-Moon;Lee, Si-Kyong;Yang, Myung-Kook
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.379-380
    • /
    • 2007
  • In this paper, we propose the fast hi-linear interpolation method for SR reconstruction. This method reconstructs the HR image rapidity by considering motion vector information for each LR input image. And its calculation used normalized deviation of image data. As using the motion vector information which is obtained at registration error checking process, this proposed can be achieved the fast and simple SR reconstructed image.

  • PDF

An Adaptive Occluded Region Detection and Interpolation for Robust Frame Rate Up-Conversion

  • Kim, Jin-Soo;Kim, Jae-Gon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.201-206
    • /
    • 2011
  • FRUC (Frame Rate Up-Conversion) technique needs an effective frame interpolation algorithm using motion information between adjacent neighboring frames. In order to have good visual qualities in the interpolated frames, it is necessary to develop an effective detection and interpolation algorithms for occluded regions. For this aim, this paper proposes an effective occluded region detection algorithm through the adaptive forward and backward motion searches and also by introducing the minimum value of normalized cross-correlation coefficient (NCCC). That is, the proposed scheme looks for the location with the minimum sum of absolute differences (SAD) and this value is compared to that of the location with the maximum value of NCCC based on the statistics of those relations. And, these results are compared with the size of motion vector and then the proposed algorithm decides whether the given block is the occluded region or not. Furthermore, once the occluded regions are classified, then this paper proposes an adaptive interpolation algorithm for occluded regions, which still exist in the merged frame, by using the neighboring pixel information and the available data in the occluded block. Computer simulations show that the proposed algorithm can effectively classify the occluded region, compared to the conventional SAD-based method and the performance of the proposed interpolation algorithm has better PSNR than the conventional algorithms.

Video retrieval method using non-parametric based motion classification (비-파라미터 기반의 움직임 분류를 통한 비디오 검색 기법)

  • Kim Nac-Woo;Choi Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.1-11
    • /
    • 2006
  • In this paper, we propose the novel video retrieval algorithm using non-parametric based motion classification in the shot-based video indexing structure. The proposed system firstly gets the key frame and motion information from each shot segmented by scene change detection method, and then extracts visual features and non-parametric based motion information from them. Finally, we construct real-time retrieval system supporting similarity comparison of these spatio-temporal features. After the normalized motion vector fields is created from MPEG compressed stream, the extraction of non-parametric based motion feature is effectively achieved by discretizing each normalized motion vectors into various angle bins, and considering a mean, a variance, and a direction of these bins. We use the edge-based spatial descriptor to extract the visual feature in key frames. Experimental evidence shows that our algorithm outperforms other video retrieval methods for image indexing and retrieval. To index the feature vectors, we use R*-tree structures.

Motion Flow Analysis using Bi-directional Prediction-Independent Framework in MPEG Compressed Domain (압축 영역에서의 양방향 예측 구조를 이용한 움직임 흐름 분석)

  • 김낙우;김태용;최종수
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.13-22
    • /
    • 2004
  • Because video sequence consists of dynamic objects in nature, the object motion in video is an effective feature in describing the contents of video sequence and motion feature plays an important role in video retrieval. In this paper, we propose a method that converts motion vectors (MVs) to a uniform set on MPEG coded domain, independent of the frame type and the direction of prediction, and utilizes these normalized MVs (N-MVs) as motion descriptor to understand video contents. We describe a frame-type independent representation of the various types of frames presented in an MPEG video in which all frames can be considered equivalently, without full-decoding. In the experiments, we show that the proposed method is better than the conventional one in terms of performance.

The Impact of Spatio-temporal Resolution of GEO-KOMPSAT-2A Rapid Scan Imagery on the Retrieval of Mesoscale Atmospheric Motion Vector (천리안위성 2A호 고속 관측 영상의 시·공간 해상도가 중규모 대기운동벡터 산출에 미치는 영향 분석)

  • Kim, Hee-Ae;Chung, Sung-Rae;Oh, Soo Min;Lee, Byung-Il;Shin, In-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.885-901
    • /
    • 2021
  • This paper illustratesthe impact of the temporal gap between satellite images and targetsize in mesoscale atmospheric motion vector (AMV) algorithm. A test has been performed using GEO-KOMPSAT-2A (GK2A) rapid-scan data sets with a temporal gap varying between 2 and 10 minutes and a targetsize between 8×8 and 40×40. Resultsshow the variation of the number of AMVs produced, mean AMV speed, and validation scores as a function of temporal gap and target size. As a results, it was confirmed that the change in the number of vectors and the normalized root-mean squared vector difference (NRMSVD) became more pronounced when smaller targets are used. In addition, it was advantageous to use shorter temporal gap and smaller target size for the AMV calculation in the lower layer, where the average speed is low and the spatio-temporal scale of atmospheric phenomena is small. The temporal gap and the targetsize are closely related to the spatial and temporalscale of the atmospheric circulation to be observed with AMVs. Thus, selecting the target size and temporal gap for an optimum calculation of AMVsrequires considering them. This paper recommendsthat the optimized configuration to be used operationally for the near-real time analysis of mesoscale meteorological phenomena is 4-min temporal gap and 16×16 pixel target size, respectively.

Posture Symmetry based Motion Capture System for Analysis of Lower -limbs Rehabilitation Training

  • Lee, Seok-Jun;Jung, Soon-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1517-1527
    • /
    • 2011
  • This paper presents a motion capture based rehabilitation training system for a lower-limb paretic patient. The system evaluates the rehabilitation status of the patient by using the bend posture of the knees and the weight balance of the body. The posture of both legs is captured with a single camera using the planar mirror. The weight distribution is obtained by the Wii Balance Board. Self-occlusion problem in the tracking of the legs is resolved by using k-nearest neighbor based clustering with body symmetry and local-linearity of the posture data. To do this, we present data normalization and its symmetric property in the normalized vector space.

Dense Optical flow based Moving Object Detection at Dynamic Scenes (동적 배경에서의 고밀도 광류 기반 이동 객체 검출)

  • Lim, Hyojin;Choi, Yeongyu;Nguyen Khac, Cuong;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.277-285
    • /
    • 2016
  • Moving object detection system has been an emerging research field in various advanced driver assistance systems (ADAS) and surveillance system. In this paper, we propose two optical flow based moving object detection methods at dynamic scenes. Both proposed methods consist of three successive steps; pre-processing, foreground segmentation, and post-processing steps. Two proposed methods have the same pre-processing and post-processing steps, but different foreground segmentation step. Pre-processing calculates mainly optical flow map of which each pixel has the amplitude of motion vector. Dense optical flows are estimated by using Farneback technique, and the amplitude of the motion normalized into the range from 0 to 255 is assigned to each pixel of optical flow map. In the foreground segmentation step, moving object and background are classified by using the optical flow map. Here, we proposed two algorithms. One is Gaussian mixture model (GMM) based background subtraction, which is applied on optical map. Another is adaptive thresholding based foreground segmentation, which classifies each pixel into object and background by updating threshold value column by column. Through the simulations, we show that both optical flow based methods can achieve good enough object detection performances in dynamic scenes.

Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN (위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교)

  • Shin, Hyemin;Ahn, Myoung-Hwan;KIM, Jisoo;Lee, Sihye;Lee, Byung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1631-1645
    • /
    • 2021
  • This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.