• Title/Summary/Keyword: Normalized difference Vegetation Index

Search Result 413, Processing Time 0.03 seconds

Suggestion of Estimating Method for Net Primary Production in the Geum River Basin Using NDVI (정규화식생지수를 이용한 금강유역의 순일차생산량 추정방법의 제안)

  • Shin, Shachul;Beak, Sungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.43-51
    • /
    • 2008
  • This study is to evaluate the NPP (Net Primary Production) distribution in the Geum River basin from NOAA/AVHRR satellite imagery data. It is supposed that the natural vegetation condition and the NPP has the linear relationship. The NPP from natural vegetation increases proportional to the annual net radiation (Rn), where radiative dryness index (RDI) is a proportional constant connecting net radiation to NPP. Normalized Difference Vegetation Index (NDVI) is used for monitoring vegetation change, and iNDVI (integrated NDVI) for annual analysis. The iNDVI has a close relation to Rn and NPP, which can be used effectively for estimating NPP distribution of where the meteorological data is unavailable. The purpose of this study is to propose a simple method to get NPP in the Geum river basin.

  • PDF

Classification of Terrestrial LiDAR Data through a Technique of Combining Heterogeneous Data (이기종 측량자료의 융합기법을 통한 지상 라이다 자료의 분류)

  • Kim, Dong-Moon;Kim, Seong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4192-4198
    • /
    • 2011
  • Terrestrial LiDAR is a high precision positioning technique to monitor the behavior and change of structures and natural slopes, but it has depended on subjective hand intensive tasks for the classification(surface and vegetation or structure and vegetation) of positioning data. Thus it has a couple of problems including lower reliability of data classification and longer operation hours due to the surface characteristics of various geographical and natural features. In order to solve those problems, the investigator developed a technique of using the NDVI, which is a major index to monitor the changes on the surface(including vegetation), to categorize land covers, combining the results with the terrestrial LiDAR data, and classifying the results according to items. The application results of the developed technique show that the accuracy of convergence was 94% even though there was a problem with partial misclassification of 0.003% along the boundaries between items. The technique took less time for data processing than the old hand intensive task and improved in accuracy, thus increasing its utilization across a range of fields.

GIS-based Landslide Susceptibility Mapping of Bhotang, Nepal using Frequency Ratio and Statistical Index Methods

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.357-364
    • /
    • 2017
  • The purpose of the study is to develop and validate landslide susceptibility map of Bhotang village development committee, Nepal using FR (Frequency Ration) and SI (Statistical Index) methods. For the purpose, firstly, a landslide inventory map was constructed based on mainly high resolution satellite images available in Google Earth Pro, and rest fieldwork as verification. Secondly, ten conditioning factors of landslide occurrence, namely: altitude, slope, aspect, mean topographic wetness index, landcover, normalized difference vegetation index, dominant soil, distance to river, distance to lineaments and rainfall, were derived and used for the development of landslide susceptibility map in GIS (Geographic Information System) environment. The landslide inventory of total 116 landslides was divided randomly such that 70% were used for training and remaining 30% for validating result by receiver operating characteristics curve analysis. The area under the curve were found to be greater than 0.7 indicating an acceptable susceptibility maps obtained using FR and SI methods in GIS for hilly region of Nepal.

Study on the Method of Diagnosing the Individuals Crop Growth Using by Multi-Spectral Images

  • Dongwon Kwon;Jaekyeong Baek;Wangyu Sang;Sungyul Chang;Jung-Il Cho;Ho-young Ban;HyeokJin Bak
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.108-108
    • /
    • 2022
  • In this study, multispectral images of wheat according to soil water state were collected, compared, and analyzed to measure the physiological response of crops to environmental stress at the individual level. CMS-V multi-spectral camera(Silios Technologies) was used for image acquisition. The camera lens consists of eight spectral bands between 550nm and 830nm. Light Reflective information collected in each band sensor and stored in digital values, and it is converted into a reflectance for calculating the vegetation index and used. According to the camera manual, the NDVI(Normalized Difference vegetation index) value was calculated using 628 nm and 752 nm bands. Image measurement was conducted under natural light conditions, and reflectance standards(Labsphere) were captured with plants for reflectance calculation. The wheat variety used Gosomil, and the wheat grown in the field was transplanted into a pot after heading date and measured. Three treatments were performed so that the soil volumetric water content of the pot was 13~17%, 20~23%, and 25%, and the growth response of wheat according to each treatment was compared using the NDVI value. In the first measurement after port transplantation, the difference in NDVI value according to treatment was not significant, but in the subsequent measurement, the NDVI value of the treatment with a water content of 13 to 17% was lowest and was the highest at 20 to 23%. The NDVI values decreased compared to the first measurement in all treatment, and the decrease was the largest at 13-17% water content and the smallest at 20-23%. Although the difference in NDVI values could be confirmed, it would be difficult to directly relate it to the water stress of plants, and further research on the response of crops to environmental stress and the analysis of multi-spectral image will be needed.

  • PDF

Monitoring Vegetation Phenology Using MODIS in Northern Plateau Region, North Korea (MODIS자료를 이용한 북한 개마고원 및 백무고원 식생의 생물계절 모니터링)

  • Cha, Su-Young;Seo, Dong-Jo;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.399-409
    • /
    • 2009
  • Many researches have shown that NDVI provides a potential methods to derive meaningful metrics that describe ecosystem functions. In this paper we investigated the use of the MODIS NDVI (Normalized Difference Vegetation Index) to monitor vegetation phenology dynamics of Northern plateau region, North Korea, during last 9-years (2000~2008). The findings of this paper can be summarized as follows. First, the length of growing season ranged from a low of 128 days in 2003 to a high of 176 days in 2000 and 2005. On the average of the last 9 years, the highest NDVI of 0.86 was marked on 28 July. Greenup onset occurs at the start of May, while the senescence begins between late September and October. Second, these annual vegetation cycles were compared with Seorak and Jiri Mountain regions of South Korea which have similar vegetation condition. Greenup onsets in South Korea were observed earlier than those of North Korea and the average time lag between the South and North Korea in Greenup was about 16 days which is a time-resolution of remotely sensed data. Sub-alpine conifers of such areas may be severely affected by the large of phenological characteristics due to the global warming trend.

EVALUATION FOR DAMAGED DEGREE OF VEGETATION BY FOREST FIRE USING LIDARAND DIGITALAERIAL PHOTOGRAPH

  • Kwak, Doo-Ahn;Chung, Jin-Won;Lee, Woo-Kyun;Lee, Seung-Ho;Cho, Hyun-Kook;We, Gwang-Jae;Kim, Tae-Min
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.533-536
    • /
    • 2007
  • The LiDAR data structure has the potential for modeling in three dimensions because the LiDAR data can represent voxels with z value under certain defined conditions. Therefore, it is possible to classify the physical damaged degree of vegetation by forest fire as using the LiDAR data because the physical loss of canopy height and width by forest fire can be relative to an amount of points reached to the ground through the canopy of damaged forest. On the other hand, biological damage of vegetation by forest fire can be explained using the NDVI (Normalized Difference Vegetation Index) which show vegetation vitality. In this study, we graded the damaged degree of vegetation by forest fire in Yangyang-Gun of South Korea using the LiDAR data for physical grading and digital aerial photograph including Red, Green, Blue and Near Infra-Red bands for biological grading. The LiDAR data was classified into 2 classes, of which one was Serious Physical Damaged (SPD) and the other was Light Physical Damaged (LPD) area. The NDVI was also classified into 2 classes which are Serious Biological Damaged (SBD) and Light Biological Damaged (LBD) area respectively. With each 2 classes ofthe LiDAR data and NDVI, the damaged area by forest fire was graded into 4 degrees like damaged class 1,2,3 and 4 grade. As a result of this study, 1 graded area was the broadest and next was the 3 grade. With this result, we could know that the burned area by forest fire in Yangyang-Gun was damaged rather biologically because the NDVI in 1 and 3 grade appeared low value whereas the LiDAR data in 1 and 3 grade included light physical damage like the LPD.

  • PDF

Estimation of Fractional Vegetation Cover in Sand Dunes Using Multi-spectral Images from Fixed-wing UAV

  • Choi, Seok Keun;Lee, Soung Ki;Jung, Sung Heuk;Choi, Jae Wan;Choi, Do Yoen;Chun, Sook Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.431-441
    • /
    • 2016
  • Since the use of UAV (Unmanned Aerial Vehicle) is convenient for the acquisition of data on broad or inaccessible regions, it is nowadays used to establish spatial information for various fields, such as the environment, ecosystem, forest, or for military purposes. In this study, the process of estimating FVC (Fractional Vegetation Cover), based on multi-spectral UAV, to overcome the limitations of conventional methods is suggested. Hence, we propose that the FVC map is generated by using multi-spectral imaging. First, two types of result classifications were obtained based on RF (Random Forest) using RGB images and NDVI (Normalized Difference Vegetation Index) with RGB images. Then, the result map was reclassified into vegetation and non-vegetation. Finally, an FVC map-based RF were generated by using pixel calculation and FVC map-based GI (Gutman and Ignatov) model were indirectly made by fixed parameters. The method of adding NDVI shows a relatively higher accuracy compared to that of adding only RGB, and in particular, the GI model shows a lower RMSE (Root Mean Square Error) with 0.182 than RF. In this regard, the availability of the GI model which uses only the values of NDVI is higher than that of RF whose accuracy varies according to the results of classification. Our results showed that the GI mode ensures the quality of the FVC if the NDVI maintained at a uniform level. This can be easily achieved by using a UAV, which can provide vegetation data to improve the estimation of FVC.

Accuracy Assessment of Unsupervised Change Detection Using Automated Threshold Selection Algorithms and KOMPSAT-3A (자동 임계값 추출 알고리즘과 KOMPSAT-3A를 활용한 무감독 변화탐지의 정확도 평가)

  • Lee, Seung-Min;Jeong, Jong-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.975-988
    • /
    • 2020
  • Change detection is the process of identifying changes by observing the multi-temporal images at different times, and it is an important technique in remote sensing using satellite images. Among the change detection methods, the unsupervised change detection technique has the advantage of extracting rapidly the change area as a binary image. However, it is difficult to understand the changing pattern of land cover in binary images. This study used grid points generated from seamless digital map to evaluate the satellite image change detection results. The land cover change results were extracted using multi-temporal KOMPSAT-3A (K3A) data taken by Gimje Free Trade Zone and change detection algorithm used Spectral Angle Mapper (SAM). Change detection results were presented as binary images using the methods Otsu, Kittler, Kapur, and Tsai among the automated threshold selection algorithms. To consider the seasonal change of vegetation in the change detection process, we used the threshold of Differenced Normalized Difference Vegetation Index (dNDVI) through the probability density function. The experimental results showed the accuracy of the Otsu and Kapur was the highest at 58.16%, and the accuracy improved to 85.47% when the seasonal effects were removed through dNDVI. The algorithm generated based on this research is considered to be an effective method for accuracy assessment and identifying changes pattern when applied to unsupervised change detection.

A Study on Estimation of Forest Burn Severity Using Kompsat-3A Images (Kompsat-3A호 영상을 활용한 산불피해 강도 산정에 관한 연구)

  • Minsun Yang;Min-A Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1299-1308
    • /
    • 2023
  • Forest fires are becoming more frequent and larger around the world due to climate change. Remote sensing such as satellite images can be used as an alternative or assistance data because it reduces various difficulties of field survey. Forest burn severity (differenced normalized burn ratio, dNBR) is calculated through the difference in normalized burn ratio (NBR) before and after a forest fire. The images used in the NBR formula are based on Landsat's near-infrared (NIR) and short-wavelength infrared (SWIR) bands. South Korea's satellite images don't have a SWIR band. So domestic studies related to forest burn severity calculated dNBR using overseas images or indirectly using the normalized difference vegetation index (NDVI) using South Korea's satellite images. Therefore, in this study, dNBR was calculated by substituting the mid-wavelength infrared (MWIR) band of Kompsat-3A (K3A) instead of the SWIR band in the NBR formula. The results were compared with the dNBR results obtained through Landsat which is the standard for dNBR formula. As a result, it was shown that dNBR using K3A's MWIR band has a wider range of values and can be expressed in more detail than dNBR using Landsat's SWIR band. Therefore, it is considered that K3A images will be highly useful in surveying burn areas and severity affected by forest fires. In addition, this study used the K3A's MWIR band images degraded to 30 m. It is considered that much better results will be obtained if a higher-resolution MWIR band is used.

Estimation of Chinese Cabbage Growth by RapidEye Imagery and Field Investigation Data

  • Na, Sangil;Lee, Kyoungdo;Baek, Shinchul;Hong, Sukyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.556-563
    • /
    • 2015
  • Chinese cabbage is one of the most important vegetables in Korea and a target crop for market stabilization as well. Remote sensing has long been used as a tool to extract plant growth, cultivated area and yield information for many crops, but little research has been conducted on Chinese cabbage. This study refers to the derivation of simple Chinese cabbage growth prediction equation by using RapidEye derived vegetation index. Daesan-myeon area in Gochang-gun, Jeollabuk-do, Korea is one of main producing district of Chinese cabbage. RapidEye multi-spectral imagery was taken on the Daesan-myeon five times from early September to late October during the Chinese cabbage growing season. Meanwhile, field reflectance spectra and five plant growth parameters, including plant height (P.H.), plant diameter (P.D.), leaf height (L.H.), leaf length (L.L.) and leaf number (L.N.), were measured for about 20 plants (ten plants per plot) for each ground survey. The normalized difference vegetation index (NDVI) for each of the 20 plants was measured using an active plant growth sensor (Crop $Circle^{TM}$) at the same time. The results of correlation analysis between the vegetation indices and Chinese cabbage growth data showed that NDVI was the most suited for monitoring the L.H. (r=0.958~0.978), L.L. (r=0.950~0.971), P.H. (r=0.887~0.982), P.D. (r=0.855~0.932) and L.N. (r=0.718~0.968). Retrieval equations were developed for estimating Chinese cabbage growth parameters using NDVI. These results obtained using the NDVI is effective provided a basis for establishing retrieval algorithm for the biophysical properties of Chinese cabbage. These results will also be useful in determining the RapidEye multi-spectral imagery necessary to estimate parameters of Chinese cabbage.