• Title/Summary/Keyword: Normalized Cockcroft-Latham Damage Model

Search Result 2, Processing Time 0.02 seconds

Study on Chevron Crack Occurring in a 4-stage Open Cold Extrusion Process by Finite Element Method (유한요소법을 이용한 4단 개방냉간압출시 발생하는 셰브론 크랙에 관한 연구)

  • Hwang, H.S.;Lee, Y.S.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.210-215
    • /
    • 2017
  • In this paper, utilizing the theory of ductile fracture a chevron crack in a 4-stage open cold extrusion process is predicted by the finite element methods and then compared with previous experiments. The normalized Cockcroft-Latham damage model is employed and the material is identified using a tensile test based material identification technique that gives fracture information as well as flow stress at large strain. A large difference between the predicted cracks and actual experiments is observed, specifically narrower width and greater maximum height of the crack. This reveals the limitation of this approach based on the conventional theory of ductile fracture. Based on the observations and the related criticisms, a new approach for predicting the chevron crack is proposed, suggesting that either the critical damage should not be a fixed material constant, or that the conventional fracture theory should be considered with the effects of embrittlement due to accumulated plastic deformation while the duration of crack generation and plastic deformation should be reduced.

Prediction of Deformation Mechanism and Fracture for an Auto-Part with Advanced High Strength Steel using Solid Element and Damage Theory (연속체요소 및 손상이론을 이용한 고강도강 차량부품의 변형기구와 파단 예측)

  • Kwak, J.H.;Yoon, S.J.;Kim, S.H.;Park, J.K.;Han, H.G.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.293-299
    • /
    • 2017
  • In this paper, finite element stamping analysis was carried out for the front lower arm to examine the applicability of solid element with damage theory to predict shear fracture phenomena induced by sheared edge as well as deformation mechanisms. Mechanical properties related to deformation and damage theory were determined from tensile test. Shear fracture was predicted by normalized Cockcroft-Latham model with initial imposition of the damage value along the sheared edge. Simulation results illustrated that the analysis with solid element and damage theory predicted edge profile, strain distribution, and forming load more accurately than the analysis with shell element. Simulation with solid element can also predict the shear fracture more exactly comparing to analysis with shell element and forming limit curve.