• Title/Summary/Keyword: Normalized Algorithm

Search Result 598, Processing Time 0.021 seconds

A Seamline Extraction Technique Considering the Characteristic of NDVI for High Resolution Satellite Image Mosaics (고해상도 위성영상 모자이크를 위한 NDVI 특성을 이용한 접합선 추출 기법)

  • Kim, Jiyoung;Chae, Taebyeong;Byun, Younggi
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.395-408
    • /
    • 2015
  • High-resolution satellite image mosaics are becoming increasingly important in the field of remote sensing image analysis as an essential image processing to create a large image constructed from several smaller images. In this paper, we present an automatic seamline extraction technique and the procedure to generate a mosaic image by this technique. For more effective seamline extraction in the overlap region of adjacent images, an NDVI-based seamline extraction technique is developed, which takes advantage of the computational time and memory. The Normalized Difference Vegetation Index(NDVI) is an index of plant "greeness" or photosynthetic activity that is employed to extract the initial seamline. The NDVI can divide into manmade region and natural region. The cost image is obtained by the canny edge detector and the buffering technique is used to extract the ranging cost image. The seamline is extracted by applying the Dijkstra algorithm to a cost image generated through the labeling process of the extracted edge information. Histogram matching is also conducted to alleviate radiometric distortion between adjacent images acquired at different time. In the experimental results using the KOMPSAT-2/3 satellite imagery, it is confirmed that the proposed method greatly reduces the visual discontinuity caused by geometric difference of adjacent images and the computation time.

Estimation of Spatial Evapotranspiration Using Terra MODIS Satellite Image and SEBAL Model - A Case of Yongdam Dam Watershed - (Terra MODIS 위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구 - 용담댐 유역을 대상으로 -)

  • Lee, Yong-Gwan;Kim, Sang-Ho;Ahn, So-Ra;Choi, Min-Ha;Lim, Kwang-Suop;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.90-104
    • /
    • 2015
  • The purpose of this paper is to build a spatio-temporal evapotranspiration(ET) estimation model using Terra MODIS satellite image and by calibrating with the flux tower ET data from watershed. The fundamentals of spatial ET model, Surface Energy Balance Algorithm for Land(SEBAL) was adopted and modified to estimate the daily ET of Yongdam Dam watershed in South Korea. The daily Normalized Distribution Vegetation Index(NDVI), Albedo, and Land Surface Temperature(LST) from MODIS and the ground measured wind speed and solar radiation data were prepared for 2 years(2012-2013). The SEBAL was calibrated with the forest ET measured by Deokyusan flux tower in the study watershed. Among the model parameters, the important parameters were surface albedo, NDVI and surface roughness in order for momentum transport during calculation of sensible heat flux. As a result of the final calibration, the monthly averaged albedo and NDVI were used because the daily values showed big deviation with unrealistic change. The determination coefficient($R^2$) between SEBAL and flux data was 0.45. The spatial ET reflected the geographical characteristics showing the ET of lowland areas was higher than the highland ET.

A Fast Digital Elevation Model Extraction Algorithm Using Gradient Correlation (Gradient Correlation을 이용한 고속 수치지형표고 모델 추출 방법)

  • Chul Soo Ye;Byung Min Jeon;Kwae Hi Lee
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.250-261
    • /
    • 1998
  • The purpose of this paper is to extract fast DEM (Digital Elevation Model) using satellite images. DEM extraction consists of three parts. First part is the modeling of satellite position and attitude, second part is the matching of two images to find corresponding points of them and third part is to calculate the elevation of each point by using the results of the first and second part. The position and attitude modeling of satellite is processed by using GCPs. A area based matching method is used to find corresponding points between the stereo satellite images. The elevation of each point is calculated using the exterior orientation parameters obtained from modeling and conjugate points from matching. In the DEM generation system, matching procedure holds most of a processing time, therefore to reduce the time for matching, a new fast matching algorithm using gradient correlation and fast similarity measure calculation method is proposed. In this paper, the SPOT satellite images, level 1A 6000$\times$6000 panchromatic images are used to extract DEM. The experiment result shows the possibility of fast DEM extraction with the satellite images.

A Comparative Study of Absolute Radiometric Correction Methods for Drone-borne Hyperspectral Imagery (드론 초분광 영상 활용을 위한 절대적 대기보정 방법의 비교 분석)

  • Jeon, Eui-ik;Kim, Kyeongwoo;Cho, Seongbeen;Kim, Shunghak
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.203-215
    • /
    • 2019
  • As hyperspectral sensors that can be mounted on drones are developed, it is possible to acquire hyperspectral imagery with high spatial and spectral resolution. Although the importance of atmospheric correction has been reduced since imagery of drones were acquired at a low altitude,studies on the conversion process from raw data to spectral reflectance should be done for studies such as estimating the concentration of surface materials using hyperspectral imagery. In this study, a vicarious radiometric calibration and an atmospheric correction algorithm based on atmospheric radiation transfer model were applied to hyperspectral data of drone and the results were compared and analyzed. The vicarious calibration method was applied to an empirical line calibration using the spectral reflectance of a tarp made of uniform material. The atmospheric correction algorithm used ATCOR-4 based Modran-5 that was widely used for the atmospheric correction of aerial hyperspectral imagery. As a result of analyzing the RMSE of the difference between the reference reflectance and the correction, the vicarious calibration using the tarp in a single period of hyperspectral image was the most accurate, but the atmospheric correction was possible according to the application purpose of using hyperspectral imagery. If the correction process of normalized spectral reflectance is carried out through the additional vicarious calibration for imagery from multiple periods in the future, accurate analysis using hyperspectral drone imagery will be possible.

Real-Time Terrain Visualization with Hierarchical Structure (실시간 시각화를 위한 계층 구조 구축 기법 개발)

  • Park, Chan Su;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.311-318
    • /
    • 2009
  • Interactive terrain visualization is an important research area with applications in GIS, games, virtual reality, scientific visualization and flight simulators, besides having military use. This is a complex and challenging problem considering that some applications require precise visualizations of huge data sets at real-time rates. In general, the size of data sets makes rendering at real-time difficult since the terrain data cannot fit entirely in memory. In this paper, we suggest the effective Real-time LOD(level-of-detail) algorithm for displaying the huge terrain data and processing mass geometry. We used a hierarchy structure with $4{\times}4$ and $2{\times}2$ tiles for real-time rendering of mass volume DEM which acquired from Digital map, LiDAR, DTM and DSM. Moreover, texture mapping is performed to visualize realistically while displaying height data of normalized Giga Byte level with user oriented terrain information and creating hill shade map using height data to hierarchy tile structure of file type. Large volume of terrain data was transformed to LOD data for real time visualization. This paper show the new LOD algorithm for seamless visualization, high quality, minimize the data loss and maximize the frame speed.

An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine (Google Earth Engine 제공 Sentinel-1과 Sentinel-2 영상을 이용한 지표 토양수분도 제작 실험)

  • Jihyun Lee ;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.599-608
    • /
    • 2023
  • The increasing interest in soil moisture data using satellite data for applications of hydrology, meteorology, and agriculture has led to the development of methods for generating soil moisture maps of variable resolution. This study demonstrated the capability of generating soil moisture maps using Sentinel-1 and Sentinel-2 data provided by Google Earth Engine (GEE). The soil moisture map was derived using synthetic aperture radar (SAR) image and optical image. SAR data provided by the Sentinel-1 analysis ready data in GEE was applied with normalized difference vegetation index (NDVI) based on Sentinel-2 and Environmental Systems Research Institute (ESRI)-based Land Cover map. This study produced a soil moisture map in the research area of Victoria, Australia and compared it with field measurements obtained from a previous study. As for the validation of the applied method's result accuracy, the comparative experimental results showed a meaningful range of consistency as 4-10%p between the values obtained using the algorithm applied in this study and the field-based ones, and they also showed very high consistency with satellite-based soil moisture data as 0.5-2%p. Therefore, public open data provided by GEE and the algorithm applied in this study can be used for high-resolution soil moisture mapping to represent regional land surface characteristics.

A Study on the Method of Producing the 1 km Resolution Seasonal Prediction of Temperature Over South Korea for Boreal Winter Using Genetic Algorithm and Global Elevation Data Based on Remote Sensing (위성고도자료와 유전자 알고리즘을 이용한 남한의 겨울철 기온의 1 km 격자형 계절예측자료 생산 기법 연구)

  • Lee, Joonlee;Ahn, Joong-Bae;Jung, Myung-Pyo;Shim, Kyo-Moon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.661-676
    • /
    • 2017
  • This study suggests a new method not only to produce the 1 km-resolution seasonal prediction but also to improve the seasonal prediction skill of temperature over South Korea. This method consists of four stages of experiments. The first stage, EXP1, is a low-resolution seasonal prediction of temperature obtained from Pusan National University Coupled General Circulation Model, and EXP2 is to produce 1 km-resolution seasonal prediction of temperature over South Korea by applying statistical downscaling to the results of EXP1. EXP3 is a seasonal prediction which considers the effect of temperature changes according to the altitude on the result of EXP2. Here, we use altitude information from ASTER GDEM, satellite observation. EXP4 is a bias corrected seasonal prediction using genetic algorithm in EXP3. EXP1 and EXP2 show poorer prediction skill than other experiments because the topographical characteristic of South Korea is not considered at all. Especially, the prediction skills of two experiments are lower at the high altitude observation site. On the other hand, EXP3 and EXP4 applying the high resolution elevation data based on remote sensing have higher prediction skill than other experiments by effectively reflecting the topographical characteristics such as temperature decrease as altitude increases. In addition, EXP4 reduced the systematic bias of seasonal prediction using genetic algorithm shows the superior performance for temporal variability such as temporal correlation, normalized standard deviation, hit rate and false alarm rate. It means that the method proposed in this study can produces high-resolution and high-quality seasonal prediction effectively.

Analysis on the Snow Cover Variations at Mt. Kilimanjaro Using Landsat Satellite Images (Landsat 위성영상을 이용한 킬리만자로 만년설 변화 분석)

  • Park, Sung-Hwan;Lee, Moung-Jin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.409-420
    • /
    • 2012
  • Since the Industrial Revolution, CO2 levels have been increasing with climate change. In this study, Analyze time-series changes in snow cover quantitatively and predict the vanishing point of snow cover statistically using remote sensing. The study area is Mt. Kilimanjaro, Tanzania. 23 image data of Landsat-5 TM and Landsat-7 ETM+, spanning the 27 years from June 1984 to July 2011, were acquired. For this study, first, atmospheric correction was performed on each image using the COST atmospheric correction model. Second, the snow cover area was extracted using the NDSI (Normalized Difference Snow Index) algorithm. Third, the minimum height of snow cover was determined using SRTM DEM. Finally, the vanishing point of snow cover was predicted using the trend line of a linear function. Analysis was divided using a total of 23 images and 17 images during the dry season. Results show that snow cover area decreased by approximately $6.47km^2$ from $9.01km^2$ to $2.54km^2$, equivalent to a 73% reduction. The minimum height of snow cover increased by approximately 290 m, from 4,603 m to 4,893 m. Using the trend line result shows that the snow cover area decreased by approximately $0.342km^2$ in the dry season and $0.421km^2$ overall each year. In contrast, the annual increase in the minimum height of snow cover was approximately 9.848 m in the dry season and 11.251 m overall. Based on this analysis of vanishing point, there will be no snow cover 2020 at 95% confidence interval. This study can be used to monitor global climate change by providing the change in snow cover area and reference data when studying this area or similar areas in future research.

Target Advertisement Service using a Viewer's Profile Reasoning (시청자 프로파일 추론 기법을 이용한 표적 광고 서비스)

  • Kim Munjo;Im Jeongyeon;Kang Sanggil;Kim Munchrul;Kang Kyungok
    • Journal of Broadcast Engineering
    • /
    • v.10 no.1 s.26
    • /
    • pp.43-56
    • /
    • 2005
  • In the existing broadcasting environment, it is not easy to serve the bi-directional service between a broadcasting server and a TV audience. In the uni-directional broadcasting environments, almost TV programs are scheduled depending on the viewers' popular watching time, and the advertisement contents in these TV programs are mainly arranged by the popularity and the ages of the audience. The audiences make an effort to sort and select their favorite programs. However, the advertisement programs which support the TV program the audience want are not served to the appropriate audiences efficiently. This randomly provided advertisement contents can occur to the audiences' indifference and avoidance. In this paper, we propose the target advertisement service for the appropriate distribution of the advertisement contents. The proposed target advertisement service estimates the audience's profile without any issuing the private information and provides the target-advertised contents by using his/her estimated profile. For the experimental results, we used the real audiences' TV usage history such as the ages, fonder and time of the programs from AC Neilson Korea. And we show the accuracy of the proposed target advertisement service algorithm. NDS (Normalized Distance Sum) and the Vector correlation method, and implementation of our target advertisement service system.

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.