• Title/Summary/Keyword: Normalization approach

Search Result 115, Processing Time 0.021 seconds

Analysis on Strategies for Modeling the Wave Equation with Physics-Informed Neural Networks (물리정보신경망을 이용한 파동방정식 모델링 전략 분석)

  • Sangin Cho;Woochang Choi;Jun Ji;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.114-125
    • /
    • 2023
  • The physics-informed neural network (PINN) has been proposed to overcome the limitations of various numerical methods used to solve partial differential equations (PDEs) and the drawbacks of purely data-driven machine learning. The PINN directly applies PDEs to the construction of the loss function, introducing physical constraints to machine learning training. This technique can also be applied to wave equation modeling. However, to solve the wave equation using the PINN, second-order differentiations with respect to input data must be performed during neural network training, and the resulting wavefields contain complex dynamical phenomena, requiring careful strategies. This tutorial elucidates the fundamental concepts of the PINN and discusses considerations for wave equation modeling using the PINN approach. These considerations include spatial coordinate normalization, the selection of activation functions, and strategies for incorporating physics loss. Our experimental results demonstrated that normalizing the spatial coordinates of the training data leads to a more accurate reflection of initial conditions in neural network training for wave equation modeling. Furthermore, the characteristics of various functions were compared to select an appropriate activation function for wavefield prediction using neural networks. These comparisons focused on their differentiation with respect to input data and their convergence properties. Finally, the results of two scenarios for incorporating physics loss into the loss function during neural network training were compared. Through numerical experiments, a curriculum-based learning strategy, applying physics loss after the initial training steps, was more effective than utilizing physics loss from the early training steps. In addition, the effectiveness of the PINN technique was confirmed by comparing these results with those of training without any use of physics loss.

MRI Assessment of Complete Response to Preoperative Chemoradiation Therapy for Rectal Cancer: 2020 Guide for Practice from the Korean Society of Abdominal Radiology

  • Seong Ho Park;Seung Hyun Cho;Sang Hyun Choi;Jong Keon Jang;Min Ju Kim;Seung Ho Kim;Joon Seok Lim;Sung Kyoung Moon;Ji Hoon Park;Nieun Seo;Korean Society of Abdominal Radiology Study Group for Rectal Cancer
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.812-828
    • /
    • 2020
  • Objective: To provide an evidence-based guide for the MRI interpretation of complete tumor response after neoadjuvant chemoradiation therapy (CRT) for rectal cancer using visual assessment on T2-weighted imaging (T2) and diffusion-weighted imaging (DWI). Materials and Methods: PubMed MEDLINE, EMBASE, and Cochrane Library were searched on November 28, 2019 to identify articles on the following issues: 1) sensitivity and specificity of T2 or DWI for diagnosing pathologic complete response (pCR) and the criteria for MRI diagnosis; 2) MRI alone vs. MRI combined with other test(s) in sensitivity and specificity for pCR; and 3) tests to select patients for the watch-and-wait management. Eligible articles were selected according to meticulous criteria and were synthesized. Results: Of 1615 article candidates, 55 eligible articles (for all three issues combined) were identified. Combined T2 and DWI performed better than T2 alone, with a meta-analytic summary sensitivity of 0.62 (95% confidence interval [CI], 0.43-0.77; I2 = 80.60) and summary specificity of 0.89 (95% CI, 0.80-0.94; I2 = 92.61) for diagnosing pCR. The criteria for the complete response on T2 in most studies had the commonality of remarkable tumor decrease to the absence of mass-like or nodular intermediate signal, although somewhat varied, as follows: (near) normalization of the wall; regular, thin, hypointense scar in the luminal side with (near) normal-appearance or homogeneous intermediate signal in the underlying wall; and hypointense thickening of the wall. The criteria on DWI were the absence of a hyperintense signal at high b-value (≥ 800 sec/mm2) in most studies. The specific algorithm to combine T2 and DWI was obscure in half of the studies. MRI combined with endoscopy was the most utilized means to select patients for the watch-and-wait management despite a lack of strong evidence to guide and support a multi-test approach. Conclusion: This systematic review and meta-analysis provide an evidence-based practical guide for MRI assessment of complete tumor response after CRT for rectal cancer.

A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data (스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식)

  • Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.163-177
    • /
    • 2019
  • As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.

Development of a Climate Change Vulnerability Index on the Health Care Sector (기후변화 건강 취약성 평가지표 개발)

  • Shin, Hosung;Lee, Suehyung
    • Journal of Environmental Policy
    • /
    • v.13 no.1
    • /
    • pp.69-93
    • /
    • 2014
  • The aim of this research was to develop a climate change vulnerability index at the district level (Si, Gun, Gu) with respect to the health care sector in Korea. The climate change vulnerability index was esimated based on the four major causes of climate-related illnesses : vector, flood, heat waves, and air pollution/allergies. The vulnerability assessment framework consists of six layers, all of which are based on the IPCC vulnerability concepts (exposure, sensitivity, and adaptive capacity) and the pathway of direct and indirect impacts of climate change modulators on health. We collected proxy variables based on the conceptual framework of climate change vulnerability. Data were standardized using the min-max normalization method. We applied the analytic hierarchy process (AHP) weight and aggregated the variables using the non-compensatory multi-criteria approach. To verify the index, sensitivity analysis was conducted by using another aggregation method (geometric transformation method, which was applied to the index of multiple deprivation in the UK) and weight, calculated by the Budget Allocation method. The results showed that it would be possible to identify the vulnerable areas by applying the developed climate change vulnerability assessment index. The climate change vulnerability index could then be used as a valuable tool in setting climate change adaptation policies in the health care sector.

  • PDF

The Effects of Evaluation Attributes of Cultural Tourism Festivals on Satisfaction and Behavioral Intention (문화관광축제 방문객의 평가속성 만족과 행동의도에 관한 연구 - 2006 광주김치대축제를 중심으로 -)

  • Kim, Jung-Hoon
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.2
    • /
    • pp.55-73
    • /
    • 2007
  • Festivals are an indispensable feature of cultural tourism(Formica & Uysal, 1998). Cultural tourism festivals are increasingly being used as instruments promoting tourism and boosting the regional economy. So much research related to festivals is undertaken from a variety of perspectives. Plans to revisit a particular festival have been viewed as an important research topic both in academia and the tourism industry. Therefore festivals have frequently been leveled as cultural events. Cultural tourism festivals have become a crucial component in constituting the attractiveness of tourism destinations(Prentice, 2001). As a result, a considerable number of tourist studies have been carried out in diverse cultural tourism festivals(Backman et al., 1995; Crompton & Mckay, 1997; Park, 1998; Clawson & Knetch, 1996). Much of previous literature empirically shows the close linkage between tourist satisfaction and behavioral intention in festivals. The main objective of this study is to investigate the effects of evaluation attributes of cultural tourism festivals on satisfaction and behavioral intention. accomplish the research objective, to find out evaluation items of cultural tourism festivals through the literature study an empirical study. Using a varimax rotation with Kaiser normalization, the research obtained four factors in the 18 evaluation attributes of cultural tourism festivals. Some empirical studies have examined the relationship between behavioral intention and actual behavior. To understand between tourist satisfaction and behavioral intention, this study suggests five hypotheses and hypothesized model. In this study, the analysis is based on primary data collected from visitors who participated in '2006 Gwangju Kimchi Festival'. In total, 700 self-administered questionnaires were distributed and 561 usable questionnaires were obtained. Respondents were presented with the 18 satisfactions item on a scale from 1(strongly disagree) to 7(strongly agree). Dimensionality and stability of the scale were evaluated by a factor analysis with varimax rotation. Four factors emerged with eigenvalues greater than 1, which explained 66.40% of the total variance and Cronbach' alpha raging from 0.876 to 0.774. And four factors named: advertisement and guides, programs, food and souvenirs, and convenient facilities. To test and estimate the hypothesized model, a two-step approach with an initial measurement model and a subsequent structural model for Structural Equation Modeling was used. The AMOS 4.0 analysis package was used to conduct the analysis. In estimating the model, the maximum likelihood procedure was used.In this study Chi-square test is used, which is the most common model goodness-of-fit test. In addition, considering the literature about the Structural Equation Modeling, this study used, besides Chi-square test, more model fit indexes to determine the tangibility of the suggested model: goodness-of-fit index(GFI) and root mean square error of approximation(RMSEA) as absolute fit indexes; normed-fit index(NFI) and non-normed-fit index(NNFI) as incremental fit indexes. The results of T-test and ANOVAs revealed significant differences(0.05 level), therefore H1(Tourist Satisfaction level should be different from Demographic traits) are supported. According to the multiple Regressions analysis and AMOS, H2(Tourist Satisfaction positively influences on revisit intention), H3(Tourist Satisfaction positively influences on word of mouth), H4(Evaluation Attributes of cultural tourism festivals influences on Tourist Satisfaction), and H5(Tourist Satisfaction positively influences on Behavioral Intention) are also supported. As the conclusion of this study are as following: First, there were differences in satisfaction levels in accordance with the demographic information of visitors. Not all visitors had the same degree of satisfaction with their cultural tourism festival experience. Therefore it is necessary to understand the satisfaction of tourists if the experiences that are provided are to meet their expectations. So, in making festival plans, the organizer should consider the demographic variables in explaining and segmenting visitors to cultural tourism festival. Second, satisfaction with attributes of evaluation cultural tourism festivals had a significant direct impact on visitors' intention to revisit such festivals and the word of mouth publicity they shared. The results indicated that visitor satisfaction is a significant antecedent of their intention to revisit such festivals. Festival organizers should strive to forge long-term relationships with the visitors. In addition, it is also necessary to understand how the intention to revisit a festival changes over time and identify the critical satisfaction factors. Third, it is confirmed that behavioral intention was enhanced by satisfaction. The strong link between satisfaction and behavioral intentions of visitors areensured by high quality advertisement and guides, programs, food and souvenirs, and convenient facilities. Thus, examining revisit intention from a time viewpoint may be of a great significance for both practical and theoretical reasons. Additionally, festival organizers should give special attention to visitor satisfaction, as satisfied visitors are more likely to return sooner. The findings of this research have several practical implications for the festivals managers. The promotion of cultural festivals should be based on the understanding of tourist satisfaction for the long- term success of tourism. And this study can help managers carry out this task in a more informed and strategic manner by examining the effects of demographic traits on the level of tourist satisfaction and the behavioral intention. In other words, differentiated marketing strategies should be stressed and executed by relevant parties. The limitations of this study are as follows; the results of this study cannot be generalized to other cultural tourism festivals because we have not explored the many different kinds of festivals. A future study should be a comparative analysis of other festivals of different visitor segments. Also, further efforts should be directed toward developing more comprehensive temporal models that can explain behavioral intentions of tourists.

  • PDF