• Title/Summary/Keyword: Normal vector field

Search Result 69, Processing Time 0.025 seconds

Finite Element Analysis of a Linear Indution Motor with Cage-type Secondary Taking Account of End-bar Resistance (농형 2차측을 갖는 선형 유도 전동기의 엔드바 저항을 고려한 유한 요소 해석)

  • Park, Seung-Chan;Kim, Byung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.846-848
    • /
    • 2001
  • In this paper, electromagnetic fields of a linear induction motor with cage-type secondary are analyzed by the finite element method. Contact resistances between end-bars and secondary conductors are considered in the finite element analysis. The field quantify is a magnetic vector potential transformed into a phasor form. As a result, the sensitivities of a phase current thrust and normal force are presented according to the variation of the contact resistance.

  • PDF

Shape and Appearance Repair for Incomplete Point Surfaces (결함이 있는 점집합 곡면의 형상 및 외관 수정)

  • Park, Se-Youn;Guo, Xiaohu;Shin, Ha-Yong;Qin, Hong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.330-343
    • /
    • 2007
  • In this paper, we present a new surface content completion system that can effectively repair both shape and appearance from scanned, incomplete point set inputs. First, geometric holes can be robustly identified from noisy and defective data sets without the need for any normal or orientation information. The geometry and texture information of the holes can then be determined either automatically from the models' context, or manually from users' selection. After identifying the patch that most resembles each hole region, the geometry and texture information can be completed by warping the candidate region and gluing it onto the hole area. The displacement vector field for the exact alignment process is computed by solving a Poisson equation with boundary conditions. Out experiments show that the unified framework, founded upon the techniques of deformable models and PDE modeling, can provide a robust and elegant solution for content completion of defective, complex point surfaces.

GENERALIZED SEMI-CONVEXITY FOR NON-DIFFERENTIABLE PLANAR SHAPES

  • Choi, Sung-Woo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.3
    • /
    • pp.37-41
    • /
    • 2007
  • The semi-convexity for planar shapes has been recently introduced in [2]. As a generalization of the convextiy, semi-convexity is closed under the Minkowski sum. But the definition of semi-convexity requires that the shape boundary should satifisfy a differentiability condition $C^{1:1}$, which means that it should be possible to take the normal vector field along the domain's extended boundary. In view of the fact that the semi-convextiy is a most natural generalization of the convexity in many respects, this is a severe restriction for the semi-convexity, since the convexity requires no such a priori differentiability condition. In this paper, we generalize the semi-convexity to the closure of the class of semi-convex $\mathcal{M}$-domains for any Minkowski class $\mathcal{M}$, and show that this generalized semi-convexity is also closed under Minkowski sum.

  • PDF

A NEW CLASSIFICATION OF REAL HYPERSURFACES WITH REEB PARALLEL STRUCTURE JACOBI OPERATOR IN THE COMPLEX QUADRIC

  • Lee, Hyunjin;Suh, Young Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.895-920
    • /
    • 2021
  • In this paper, first we introduce the full expression of the Riemannian curvature tensor of a real hypersurface M in the complex quadric Qm from the equation of Gauss and some important formulas for the structure Jacobi operator Rξ and its derivatives ∇Rξ under the Levi-Civita connection ∇ of M. Next we give a complete classification of Hopf real hypersurfaces with Reeb parallel structure Jacobi operator, ∇ξRξ = 0, in the complex quadric Qm for m ≥ 3. In addition, we also consider a new notion of 𝒞-parallel structure Jacobi operator of M and give a nonexistence theorem for Hopf real hypersurfaces with 𝒞-parallel structure Jacobi operator in Qm, for m ≥ 3.

PSEUDO-RIEMANNIAN SASAKI SOLVMANIFOLDS

  • Diego Conti;Federico A. Rossi;Romeo Segnan Dalmasso
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.115-141
    • /
    • 2023
  • We study a class of left-invariant pseudo-Riemannian Sasaki metrics on solvable Lie groups, which can be characterized by the property that the zero level set of the moment map relative to the action of some one-parameter subgroup {exp tX} is a normal nilpotent subgroup commuting with {exp tX}, and X is not lightlike. We characterize this geometry in terms of the Sasaki reduction and its pseudo-Kähler quotient under the action generated by the Reeb vector field. We classify pseudo-Riemannian Sasaki solvmanifolds of this type in dimension 5 and those of dimension 7 whose Kähler reduction in the above sense is abelian.

Fault Classification Model Based on Time Domain Feature Extraction of Vibration Data (진동 데이터의 시간영역 특징 추출에 기반한 고장 분류 모델)

  • Kim, Seung-il;Noh, Yoojeong;Kang, Young-jin;Park, Sunhwa;Ahn, Byungha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.25-33
    • /
    • 2021
  • With the development of machine learning techniques, various types of data such as vibration, temperature, and flow rate can be used to detect and diagnose abnormalities in machine conditions. In particular, in the field of the state monitoring of rotating machines, the fault diagnosis of machines using vibration data has long been carried out, and the methods are also very diverse. In this study, an experiment was conducted to collect vibration data from normal and abnormal compressors by installing accelerometers directly on rotary compressors used in household air conditioners. Data segmentation was performed to solve the data shortage problem, and the main features for the fault classification model were extracted through the chi-square test after statistical and physical features were extracted from the vibration data in the time domain. The support vector machine (SVM) model was developed to classify the normal or abnormal conditions of compressors and improve the classification accuracy through the hyperparameter optimization of the SVM.

Scanning Stereoscopic PIV for 3D Vorticity Measurement

  • SAKAKIBARA Jun;HORI Toshio
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.1-13
    • /
    • 2004
  • A scanning stereo-PIV system was developed to measure the three-dimensional distribution of three-component velocity in a turbulent round jet. A laser light beam produced by a high repetition rate YLF pulse laser was expanded vertically by a cylindrical lens to form a laser light sheet. The light sheet is scanned in a direction normal to the sheet by a flat mirror mounted on an optical scanner, which is controlled by a programmable scanner controller. Two high-speed mega-pixel resolution C-MOS cameras captured the particle images illuminated by the light sheet, and stereoscopic PIV method was adopted to acquire the 3D-3C-velocity distribution of turbulent round jet in an octagonal tank filled with water. The jet Reynolds number was set at Re=1000 and the streamwise location of the measurement was fixed at approximately x = 40D. Time evolution of three-dimensional vortical structure, which is identified by vorticity, is visualized. It revealed that the existence of a group of hairpin-like vortex structures was quite evident around the rim of the shear layer of the jet. Turbulence statistics shows good agreement with the previous data, and divergence of a filtered (unfiltered) velocity vector field was $7\%\;(22\%)$ of root-me an-squared vorticity value.

  • PDF

Simulation of a Pulsating Air Pocket in a Sloshing Tank Using Unified Conservation Laws and HCIB Method (통합보존식 해석과 HCIB 법을 이용한 슬로싱 탱크 내부 갇힌 공기에 의한 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.271-280
    • /
    • 2021
  • The code developed using a pressure-based method for unified conservation laws of incompressible/compressible fluids is expanded to handle moving or deforming body boundaries using the hybrid Cartesian/immersed boundary method. An instantaneous pressure field is calculated from a pressure Poisson equation for the whole fluid domain, including the compressible gas region. The polytropic gas is assumed for the compressible fluid so that the energy equation is decoupled. Immersed boundary nodes are identified based on edges crossing body boundaries. The velocity vector is reconstructed at the immersed boundary node using an interpolation along the assigned local normal line. The developed code is validated by comparing the time histories of pressure and wave elevation for sloshing in a rectangular and a membrane-type tank. The validated code is applied to simulate air cushion effects in a rectangular tank under sway motion. Time variations of pressure fields are analyzed in detail as the air pocket pulsates. It is shown that the contraction and expansion of the air pocket dominate the pressure loads on the wall of the tank. The present results are in good agreement with other experimental and computational results for the amplitude and the decay of the pressure oscillations measured at the pressure gauges.

Abnormal Crowd Behavior Detection via H.264 Compression and SVDD in Video Surveillance System (H.264 압축과 SVDD를 이용한 영상 감시 시스템에서의 비정상 집단행동 탐지)

  • Oh, Seung-Geun;Lee, Jong-Uk;Chung, Yongw-Ha;Park, Dai-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.183-190
    • /
    • 2011
  • In this paper, we propose a prototype system for abnormal sound detection and identification which detects and recognizes the abnormal situations by means of analyzing audio information coming in real time from CCTV cameras under surveillance environment. The proposed system is composed of two layers: The first layer is an one-class support vector machine, i.e., support vector data description (SVDD) that performs rapid detection of abnormal situations and alerts to the manager. The second layer classifies the detected abnormal sound into predefined class such as 'gun', 'scream', 'siren', 'crash', 'bomb' via a sparse representation classifier (SRC) to cope with emergency situations. The proposed system is designed in a hierarchical manner via a mixture of SVDD and SRC, which has desired characteristics as follows: 1) By fast detecting abnormal sound using SVDD trained with only normal sound, it does not perform the unnecessary classification for normal sound. 2) It ensures a reliable system performance via a SRC that has been successfully applied in the field of face recognition. 3) With the intrinsic incremental learning capability of SRC, it can actively adapt itself to the change of a sound database. The experimental results with the qualitative analysis illustrate the efficiency of the proposed method.

A Numerical Study on Spatial Behavior of Linear Absorbing Solute in Heterogeneous Porous Media (비균질 다공성 매질에서 선형 흡착 용질의 공간적 거동에 대한 수치적 연구)

  • Jeong, Woo Chang;Lee, Chi Hun;Song, Jai Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 2003
  • This paper presents a numerical study of the spatial behavior of a linear absorbing solute in a heterogeneous porous medium. The spatially correlated log-normal hydraulic conductivity field is generated in a given two-dimensional domain by using the geostatistical method (Turning Bands algorithm). The velocity vector field is calculated by applying the two-dimensional saturated groundwater flow equation to the Galerkin finite element method. The simulation of solute transport is carried out by using the random walk particle tracking model with CD(constant displacement) scheme in which the time interval is automatically adjusted. In this study, the spatial behavior of a solute is analyzed by the longitudinal center-of-mass displacement, longitudinal spatial spread moment and longitudinal plume skewness.

  • PDF