• Title/Summary/Keyword: Normal learning

Search Result 810, Processing Time 0.023 seconds

Calculated Damage of Italian Ryegrass in Abnormal Climate Based World Meteorological Organization Approach Using Machine Learning

  • Jae Seong Choi;Ji Yung Kim;Moonju Kim;Kyung Il Sung;Byong Wan Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.190-198
    • /
    • 2023
  • This study was conducted to calculate the damage of Italian ryegrass (IRG) by abnormal climate using machine learning and present the damage through the map. The IRG data collected 1,384. The climate data was collected from the Korea Meteorological Administration Meteorological data open portal.The machine learning model called xDeepFM was used to detect IRG damage. The damage was calculated using climate data from the Automated Synoptic Observing System (95 sites) by machine learning. The calculation of damage was the difference between the Dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of IRG data (1986~2020). The level of abnormal climate was set as a multiple of the standard deviation applying the World Meteorological Organization (WMO) standard. The DMYnormal was ranged from 5,678 to 15,188 kg/ha. The damage of IRG differed according to region and level of abnormal climate with abnormal temperature, precipitation, and wind speed from -1,380 to 1,176, -3 to 2,465, and -830 to 962 kg/ha, respectively. The maximum damage was 1,176 kg/ha when the abnormal temperature was -2 level (+1.04℃), 2,465 kg/ha when the abnormal precipitation was all level and 962 kg/ha when the abnormal wind speed was -2 level (+1.60 ㎧). The damage calculated through the WMO method was presented as an map using QGIS. There was some blank area because there was no climate data. In order to calculate the damage of blank area, it would be possible to use the automatic weather system (AWS), which provides data from more sites than the automated synoptic observing system (ASOS).

Paying Attention to Students and Promoting Students' Mathematics Understanding

  • Li, Miao;Tang, Jian-Lan;Huang, Xiao-Xue
    • Research in Mathematical Education
    • /
    • v.12 no.1
    • /
    • pp.67-83
    • /
    • 2008
  • Promoting students' mathematics understanding is an important research theme in mathematics education. According to general theories of learning, mathematics understanding is close to active learning or significant learning. Thus, if a teacher wants to promote his/her students' mathematics understanding, he/she should pay attention to the students so that the students' thinking is in active situation. In the first part of this paper, some mathematics teachers' ideas about paying attention to their students in Chinese high school are given by questionnaire and interview. In the second part of this paper, we give some teaching episodes about how experienced mathematics teachers promote their students' mathematics understanding based on paying attention on them.

  • PDF

Performance Improvement of Classifier by Combining Disjunctive Normal Form features

  • Min, Hyeon-Gyu;Kang, Dong-Joong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.50-64
    • /
    • 2018
  • This paper describes a visual object detection approach utilizing ensemble based machine learning. Object detection methods employing 1D features have the benefit of fast calculation speed. However, for real image with complex background, detection accuracy and performance are degraded. In this paper, we propose an ensemble learning algorithm that combines a 1D feature classifier and 2D DNF (Disjunctive Normal Form) classifier to improve the object detection performance in a single input image. Also, to improve the computing efficiency and accuracy, we propose a feature selecting method to reduce the computing time and ensemble algorithm by combining the 1D features and 2D DNF features. In the verification experiments, we selected the Haar-like feature as the 1D image descriptor, and demonstrated the performance of the algorithm on a few datasets such as face and vehicle.

Automatic Detection of Anomalies in Blood Glucose Using a Machine Learning Approach

  • Zhu, Ying
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • Rapid strides are being made to bring to reality the technology of wearable sensors for monitoring patients' physiological data.We study the problem of automatically detecting anomalies in themeasured blood glucose levels. The normal daily measurements of the patient are used to train a hidden Markov model (HMM). The structure of the HMM-its states and output symbols-are selected to accurately model the typical transitions in blood glucose levels throughout a 24-hour period. The learning of the HMM is done using historic data of normal measurements. The HMM can then be used to detect anomalies in blood glucose levels being measured, if the inferred likelihood of the observed data is low in the world described by the HMM. Our simulation results show that our technique is accurate in detecting anomalies in glucose levels and is robust (i.e., no false positives) in the presence of reasonable changes in the patient's daily routine.

Profane or Not: Improving Korean Profane Detection using Deep Learning

  • Woo, Jiyoung;Park, Sung Hee;Kim, Huy Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.305-318
    • /
    • 2022
  • Abusive behaviors have become a common issue in many online social media platforms. Profanity is common form of abusive behavior in online. Social media platforms operate the filtering system using popular profanity words lists, but this method has drawbacks that it can be bypassed using an altered form and it can detect normal sentences as profanity. Especially in Korean language, the syllable is composed of graphemes and words are composed of multiple syllables, it can be decomposed into graphemes without impairing the transmission of meaning, and the form of a profane word can be seen as a different meaning in a sentence. This work focuses on the problem of filtering system mis-detecting normal phrases with profane phrases. For that, we proposed the deep learning-based framework including grapheme and syllable separation-based word embedding and appropriate CNN structure. The proposed model was evaluated on the chatting contents from the one of the famous online games in South Korea and generated 90.4% accuracy.

A study on the auto encoder-based anomaly detection technique for pipeline inspection (관로 조사를 위한 오토 인코더 기반 이상 탐지기법에 관한 연구)

  • Gwantae Kim;Junewon Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.2
    • /
    • pp.83-93
    • /
    • 2024
  • In this study, we present a sewer pipe inspection technique through a combination of active sonar technology and deep learning algorithms. It is difficult to inspect pipes containing water using conventional CCTV inspection methods, and there are various limitations, so a new approach is needed. In this paper, we introduce a inspection method using active sonar, and apply an auto encoder deep learning model to process sonar data to distinguish between normal and abnormal pipelines. This model underwent training on sonar data from a controlled environment under the assumption of normal pipeline conditions and utilized anomaly detection techniques to identify deviations from established standards. This approach presents a new perspective in pipeline inspection, promising to reduce the time and resources required for sewer system management and to enhance the reliability of pipeline inspections.

Microblog Sentiment Analysis Method Based on Spectral Clustering

  • Dong, Shi;Zhang, Xingang;Li, Ya
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.727-739
    • /
    • 2018
  • This study evaluates the viewpoints of user focus incidents using microblog sentiment analysis, which has been actively researched in academia. Most existing works have adopted traditional supervised machine learning methods to analyze emotions in microblogs; however, these approaches may not be suitable in Chinese due to linguistic differences. This paper proposes a new microblog sentiment analysis method that mines associated microblog emotions based on a popular microblog through user-building combined with spectral clustering to analyze microblog content. Experimental results for a public microblog benchmark corpus show that the proposed method can improve identification accuracy and save manually labeled time compared to existing methods.

Attentive Transfer Learning via Self-supervised Learning for Cervical Dysplasia Diagnosis

  • Chae, Jinyeong;Zimmermann, Roger;Kim, Dongho;Kim, Jihie
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.453-461
    • /
    • 2021
  • Many deep learning approaches have been studied for image classification in computer vision. However, there are not enough data to generate accurate models in medical fields, and many datasets are not annotated. This study presents a new method that can use both unlabeled and labeled data. The proposed method is applied to classify cervix images into normal versus cancerous, and we demonstrate the results. First, we use a patch self-supervised learning for training the global context of the image using an unlabeled image dataset. Second, we generate a classifier model by using the transferred knowledge from self-supervised learning. We also apply attention learning to capture the local features of the image. The combined method provides better performance than state-of-the-art approaches in accuracy and sensitivity.

Sentiment Orientation Using Deep Learning Sequential and Bidirectional Models

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2021
  • Sentiment Analysis has become very important field of research because posting of reviews is becoming a trend. Supervised, unsupervised and semi supervised machine learning methods done lot of work to mine this data. Feature engineering is complex and technical part of machine learning. Deep learning is a new trend, where this laborious work can be done automatically. Many researchers have done many works on Deep learning Convolutional Neural Network (CNN) and Long Shor Term Memory (LSTM) Neural Network. These requires high processing speed and memory. Here author suggested two models simple & bidirectional deep leaning, which can work on text data with normal processing speed. At end both models are compared and found bidirectional model is best, because simple model achieve 50% accuracy and bidirectional deep learning model achieve 99% accuracy on trained data while 78% accuracy on test data. But this is based on 10-epochs and 40-batch size. This accuracy can also be increased by making different attempts on epochs and batch size.

A Proposal for Developing a Situated Learning Support Systems-Based on an MMORPG

  • PIAO, Cheng Ri
    • Educational Technology International
    • /
    • v.6 no.2
    • /
    • pp.59-67
    • /
    • 2005
  • The primary purposes of this study are to develop a Situated Learning Support System based on an MMORPG (Massively Multiplayer Online Role Playing Game) and to investigate applications of Situated Learning theory both hypothetically and practically. In Situated Leaning theory, cognition is interpreted as a dynamic system related to situation, context and activity. According to this theory, learning context, social interaction and personal direct experience are also emphasized. A virtual reality learning system based on an MMORPG provides context, social interaction and a learning environment able to provide direct experiences. However, such a system has been difficult for teachers to develop. This study aims to develop a support system facilitating the construction of a Situated Learning System based on an MMORPG. This study proposes new research and practical applications of Situated Learning theory using educational games.