• Title/Summary/Keyword: Normal learning

Search Result 810, Processing Time 0.022 seconds

Artificial Intelligence for Clinical Research in Voice Disease (후두음성 질환에 대한 인공지능 연구)

  • Jungirl, Seok;Tack-Kyun, Kwon
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.33 no.3
    • /
    • pp.142-155
    • /
    • 2022
  • Diagnosis using voice is non-invasive and can be implemented through various voice recording devices; therefore, it can be used as a screening or diagnostic assistant tool for laryngeal voice disease to help clinicians. The development of artificial intelligence algorithms, such as machine learning, led by the latest deep learning technology, began with a binary classification that distinguishes normal and pathological voices; consequently, it has contributed in improving the accuracy of multi-classification to classify various types of pathological voices. However, no conclusions that can be applied in the clinical field have yet been achieved. Most studies on pathological speech classification using speech have used the continuous short vowel /ah/, which is relatively easier than using continuous or running speech. However, continuous speech has the potential to derive more accurate results as additional information can be obtained from the change in the voice signal over time. In this review, explanations of terms related to artificial intelligence research, and the latest trends in machine learning and deep learning algorithms are reviewed; furthermore, the latest research results and limitations are introduced to provide future directions for researchers.

The Correspondence of Culture and E-Learning Perception Among Indian and Croatian Students During the COVID-19 Pandemic

  • Simmy Kurian;Hareesh N Ramanathan;Barbara Pisker
    • Asia pacific journal of information systems
    • /
    • v.32 no.3
    • /
    • pp.656-683
    • /
    • 2022
  • The COVID-19 pandemic has profoundly affected the world, inflicting nationwide lockdowns interrupting conventional schooling through schools, colleges and universities. Educational institutions are struggling to maintain learning continuity through remote learning solutions. Still, the students' perception of this 'new normal' mode and pace of learning needs to be examined to ensure the success of these efforts. This study aimed at examining the perception of higher education students in India and Croatia especially with respect to the association between cultural orientation and the e-learning. The period considered for the data collection was from March 2020 to September 2020. Correspondence analysis was attempted to create spatial maps to depict the respondent choices. Students from both the regions agreed to the high-power distance that existed in their cultures and considered the role of device and content to be an important dimension of e-learning for it to be effective, but the results also pointed out some differences in their choices on other culture dimensions as well as factors affecting e-learning which make this study unique and suggest in-depth future research for conclusive results.

Development of facility safety diagnosis system for offshore wind power using semi-supervised machine learning (준지도 학습 머신러닝을 이용한 해상 풍력용 설비안전 진단 시스템의 개발)

  • Woo-Jin Choi
    • Journal of Wind Energy
    • /
    • v.13 no.3
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, a semi-supervised machine learning technique applied to actual field vibration data acquired from Jeju-do wind turbines for predictive diagnosis of abnormal conditions of offshore wind turbines is introduced. Semi-supervised machine learning, which combines un-supervised learning with supervised learning, can be used to perform anomaly detection in situations where sufficient fault data cannot be obtained. The signal processing results using the spectrogram of the original signal were shown, and external data were used to overcome the problem that disturbance reactions easily occurred due to the imbalance between the number of normal and abnormal data. Out of distribution (OOD), which uses external data, is a technology that is regarded as abnormal data that is unlikely to occur in reality, but we were able to use it by expanding it. By rearranging the distribution of data in this way, classification can be performed more robustly. Specifically, by observing the trends of the abnormal score and the change in the feature of the representation layer, continuous learning was performed through a mixture of existing and new data.

Sign Language Image Recognition System Using Artificial Neural Network

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.193-200
    • /
    • 2019
  • Hearing impaired people are living in a voice culture area, but due to the difficulty of communicating with normal people using sign language, many people experience discomfort in daily life and social life and various disadvantages unlike their desires. Therefore, in this paper, we study a sign language translation system for communication between a normal person and a hearing impaired person using sign language and implement a prototype system for this. Previous studies on sign language translation systems for communication between normal people and hearing impaired people using sign language are classified into two types using video image system and shape input device. However, existing sign language translation systems have some problems that they do not recognize various sign language expressions of sign language users and require special devices. In this paper, we use machine learning method of artificial neural network to recognize various sign language expressions of sign language users. By using generalized smart phone and various video equipment for sign language image recognition, we intend to improve the usability of sign language translation system.

A Study on the Machine Learning Model for Product Faulty Prediction in Internet of Things Environment (사물인터넷 환경에서 제품 불량 예측을 위한 기계 학습 모델에 관한 연구)

  • Ku, Jin-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.1
    • /
    • pp.55-60
    • /
    • 2017
  • In order to provide intelligent services without human intervention in the Internet of Things environment, it is necessary to analyze the big data generated by the IoT device and learn the normal pattern, and to predict the abnormal symptoms such as faulty or malfunction based on the learned normal pattern. The purpose of this study is to implement a machine learning model that can predict product failure by analyzing big data generated in various devices of product process. The machine learning model uses the big data analysis tool R because it needs to analyze based on existing data with a large volume. The data collected in the product process include the information about product faulty, so supervised learning model is used. As a result of the study, I classify the variables and variable conditions affecting the product failure, and proposed a prediction model for the product failure based on the decision tree. In addition, the predictive power of the model was significantly higher in the conformity and performance evaluation analysis of the model using the ROC curve.

Fast Detection of Disease in Livestock based on Deep Learning (축사에서 딥러닝을 이용한 질병개체 파악방안)

  • Lee, Woongsup;Kim, Seong Hwan;Ryu, Jongyeol;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1009-1015
    • /
    • 2017
  • Recently, the wide spread of IoT (Internet of Things) based technology enables the accumulation of big biometric data on livestock. The availability of big data allows the application of diverse machine learning based algorithm in the field of agriculture, which significantly enhances the productivity of farms. In this paper, we propose an abnormal livestock detection algorithm based on deep learning, which is the one of the most prominent machine learning algorithm. In our proposed scheme, the livestock are divided into two clusters which are normal and abnormal (disease) whose biometric data has different characteristics. Then a deep neural network is used to classify these two clusters based on the biometric data. By using our proposed scheme, the normal and abnormal livestock can be identified based on big biometric data, even though the detailed stochastic characteristics of biometric data are unknown, which is beneficial to prevent epidemic such as mouth-and-foot disease.

Performance comparison on vocal cords disordered voice discrimination via machine learning methods (기계학습에 의한 후두 장애음성 식별기의 성능 비교)

  • Cheolwoo Jo;Soo-Geun Wang;Ickhwan Kwon
    • Phonetics and Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.35-43
    • /
    • 2022
  • This paper studies how to improve the identification rate of laryngeal disability speech data by convolutional neural network (CNN) and machine learning ensemble learning methods. In general, the number of laryngeal dysfunction speech data is small, so even if identifiers are constructed by statistical methods, the phenomenon caused by overfitting depending on the training method can lead to a decrease the identification rate when exposed to external data. In this work, we try to combine results derived from CNN models and machine learning models with various accuracy in a multi-voting manner to ensure improved classification efficiency compared to the original trained models. The Pusan National University Hospital (PNUH) dataset was used to train and validate algorithms. The dataset contains normal voice and voice data of benign and malignant tumors. In the experiment, an attempt was made to distinguish between normal and benign tumors and malignant tumors. As a result of the experiment, the random forest method was found to be the best ensemble method and showed an identification rate of 85%.

The Analysis of Features of Project Based Learning in Smart Learning Environment (스마트러닝 환경에서의 프로젝트 학습 전략 및 요인 분석)

  • Kim, Soohwan;Han, Seonkwan
    • Journal of The Korean Association of Information Education
    • /
    • v.17 no.3
    • /
    • pp.243-252
    • /
    • 2013
  • In this paper, we analyzed and suggested an educational strategy and features for project-based learning in smart learning environment. Smart learning environment is different of e-learning environment, therefore the educational strategy for smart learning is needed. In this paper, we conducted project-based learning for elementary school students in smart learning environment, and we analyzed the difference between a normal project-based learning and a project based learning in smart learning environment and suggested the educational strategy and the considerations through questionnaire, interview, and observation, Furthermore, we figured out factors that affected educational satisfaction of student. As a result, students thought that there is difference of smart project-based learning in some factors: technology and devices, software, and participation for learning. Also, we found main factors to affect educational satisfaction are two factors: technology and devices, and always-on.

Deep Learning-based Abnormal Behavior Detection System for Dementia Patients (치매 환자를 위한 딥러닝 기반 이상 행동 탐지 시스템)

  • Kim, Kookjin;Lee, Seungjin;Kim, Sungjoong;Kim, Jaegeun;Shin, Dongil;shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.133-144
    • /
    • 2020
  • The number of elderly people with dementia is increasing as fast as the proportion of older people due to aging, which creates a social and economic burden. In particular, dementia care costs, including indirect costs such as increased care costs due to lost caregiver hours and caregivers, have grown exponentially over the years. In order to reduce these costs, it is urgent to introduce a management system to care for dementia patients. Therefore, this study proposes a sensor-based abnormal behavior detection system to manage dementia patients who live alone or in an environment where they cannot always take care of dementia patients. Existing studies were merely evaluating behavior or evaluating normal behavior, and there were studies that perceived behavior by processing images, not data from sensors. In this study, we recognized the limitation of real data collection and used both the auto-encoder, the unsupervised learning model, and the LSTM, the supervised learning model. Autoencoder, an unsupervised learning model, trained normal behavioral data to learn patterns for normal behavior, and LSTM further refined classification by learning behaviors that could be perceived by sensors. The test results show that each model has about 96% and 98% accuracy and is designed to pass the LSTM model when the autoencoder outlier has more than 3%. The system is expected to effectively manage the elderly and dementia patients who live alone and reduce the cost of caring.

Network Traffic Measurement Analysis using Machine Learning

  • Hae-Duck Joshua Jeong
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.19-27
    • /
    • 2023
  • In recent times, an exponential increase in Internet traffic has been observed as a result of advancing development of the Internet of Things, mobile networks with sensors, and communication functions within various devices. Further, the COVID-19 pandemic has inevitably led to an explosion of social network traffic. Within this context, considerable attention has been drawn to research on network traffic analysis based on machine learning. In this paper, we design and develop a new machine learning framework for network traffic analysis whereby normal and abnormal traffic is distinguished from one another. To achieve this, we combine together well-known machine learning algorithms and network traffic analysis techniques. Using one of the most widely used datasets KDD CUP'99 in the Weka and Apache Spark environments, we compare and investigate results obtained from time series type analysis of various aspects including malicious codes, feature extraction, data formalization, network traffic measurement tool implementation. Experimental analysis showed that while both the logistic regression and the support vector machine algorithm were excellent for performance evaluation, among these, the logistic regression algorithm performs better. The quantitative analysis results of our proposed machine learning framework show that this approach is reliable and practical, and the performance of the proposed system and another paper is compared and analyzed. In addition, we determined that the framework developed in the Apache Spark environment exhibits a much faster processing speed in the Spark environment than in Weka as there are more datasets used to create and classify machine learning models.