• Title/Summary/Keyword: Normal grain

Search Result 298, Processing Time 0.03 seconds

A Study on the Effects of Molding Pressure on the Compressive Strength and Durability of Soil-Cement Mixture (성형압력이 Soil-Cement의 강도 및 내구성에 미치는 영향에 관한 연구)

  • 서원명;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4575-4591
    • /
    • 1978
  • In order to investigate the effects of grain size distribution, cement content, and molding pressure on the strength and durability of soil-cement mixtures, a laboratory test of soil cement mixtures was performed at four levels of cement content, five levels of molding pressure, and four levels of normal curing periods. The results are summarized as follows: 1. Optimum moisture contents in loam soil and maximum dry density in sand soil increased with the increase of cement content, but in others, both optimum moisture contents and maximum dry density were changed ununiformly. 2. When the specimens were molded with molding pressure, 50kg/$\textrm{cm}^2$, strength of soil cement mixture with cement content, 2 and 4 per cent, was lower than the strength of soil cement mixture without cement content by more than 40 to 50 per cent. 3. The strength of soil-cement molded with molding pressure, 100kg/$\textrm{cm}^2$, was higher than the strength of soil-cement molded with M.D.D. obtained from standard compaction test more than 40 per cent in sand loam cement and 50 per cent in loamy cement. 4. There was highly significant positive correlation among molding pressure, cement content and unconfined compressive strentgh and so the following multiple regression equations were obtained. Loam: fc=1.9693C+0.197P-0.84 Sandy loam: fc=2.9065C+0.235P-0.77 5. When the specimens were molded with molding pressure, 20 to 100kg/$\textrm{cm}^2$, the regression equation between the 28-day and 7-day strenght was obtained as follows. Loam : q28=1.1050q7+7.59(r=0.9147) Sandy loam : q28=1.3905q7+3.17 (r=0.9801) 6. At the cement contents of above 50 per cent, the weight losses by freeeze-thaw test were negligible. At the cement content of below 8 per cent the weight losses were singnificantly high under low molding pressure and remarkably decreased with the increase of molding pressure up to 80kg/$\textrm{cm}^2$. 7. Resistance to damage from water and to absorption of water were not improved by molding pressure alone, but when the soil was mixtured with cement above 6 per cent, damage seldoms occurred and absorbed less than 5 per cent of water. 8. There was highly significant inverse-corelationship between the compressive strength of soil cement mixtures and their freeze-thaw loss as well as water absorption. By the regression equation methods, the relationships between them were expessed as followed fc=-7.3206Wa+115.6(r=0.9871) log fc=-0.0174L+1.59(r=0.7709) where fc=unconfined compressive stregth after 28-days curing. kg/$\textrm{cm}^2$ Wa=water absorption, % L : freeze-thaw loss rate, %

  • PDF

QTL Analysis of Rice Heading-related Genes Using Cheongcheong/Nagdong Doubled Haploid Genetic Map (청청/낙동 배가반수체 유전자 지도를 이용한 쌀의 출수기 관련 양적형질유전자좌(QTL) 분석)

  • Jang, Yoon-Hee;Park, Jae-Ryoung;Kim, Kyung-Min
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.844-850
    • /
    • 2020
  • Disaster-related extreme weather is rapidly increasing due to climate change. In Korea, typhoons accompanied by rainfall usually approach in August and September, causing great damage. The purpose of this study is to find a gene that regulates the heading date of rice in order to avoid loss of harvest from climate change and typhoons. Cheongcheong/Nagdong doubled haploid (CNDH) was used as the plant material to investigate the location of heading-related genes using QTL and sequence analysis by cloning the gene. In the distribution chart, the heading dates, culm lengths, panicle lengths, numbers of panicles, and 1,000-grain weights all have normal distributions. QTL analysis found 13 contigs on chromosome 8. One QTL, named qHd8, was detected on chromosome 8. The range at qHd8 was approximately 7.7 cM, with RM72 and RM404 markers near the peak. There were 13 contigs and 1 ORF. Protein sequence analysis showed that rice was similar to Os08g0341700, AtSFH13, and AtSFH7 proteins. Os08g0341700, which is involved in signal transduction, is similar to phosphatidylinositol transfer-like protein II, and complete information is not available, but it is believed to play a role in the phosphatidylinositol-specific signaling pathway related to Sec14P.

Kernel Characteristics of the Modified Opaque-2 Systhetics, Zea mays, L. (변갱 오페이크-2 옥수수의 종실특성)

  • Bong-Ho Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.1
    • /
    • pp.49-55
    • /
    • 1986
  • To obtain basic information required for improving grain yield of the two modified opaque-2 synthetics, which have been developed at College of Agr., Chungnam National Univ. in 1980 and named as Puyo No.2 and No.3, physical kernel characteristics of the two synthetics were fully investigated and results obtained are as follows: Puyo No.2 synthetics had a smaller kernel size with lighter weight than the Puyo No.3. The Puyo No.2 synthetics had higher kernel density than the Puyo No.3 with large Kernel size. The Puyo No.2 had kernels with heterogenous endosperm phenotypes. Some kernels had mottled patches on endosperm, while other kernels 1/2 and 1/2 phenotypes. All the modified opaque-2 synthetics had somewhat lighter endosperm weight than the normal check hybrid. The Puyo No.2 synthetics with smaller kernel size had more germ portion compared with large kernel, Puyo No.3. The Puyo No.2 had shown also typical endosperm texture when observed under microscope after cutting by glass knife. The lysine content of the Puyo No.2 was higher than those of other varieties studied. Breeding schemes to improve the yield capacity of the two modified opaue-2 synthetics were discussed.

  • PDF

Microstructure of Co-base superalloy prepared by a investment casting (정밀주조법으로 제조된 Co계 초내열 합금의 미세구조)

  • Lee, Jung-Il;Lee, Ho Jun;Cho, Hyun Su;Paeng, Jong Min;Park, Jong Bum;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.313-318
    • /
    • 2017
  • The microstructure of a cobalt-base superalloy (ECY768) obtained by an investment casting process was studied. This work focuses on the resulting microstructures arising from different melt and mold temperatures in normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an ${\alpha}-Co$ (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as $M_{23}C_6-type$ carbides precipitated at grain boundaries. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the MC-type phase, was also detected and their presence could be linked to the manufacturing process and environment.

The Microstructural Properties Change Owing to the Sintering Condition of T42 High Speed Steel Produced by Powder Injection Molding Process (분말 사출 성형법으로 제조된 T42 고속도 공구강의 소결 조건에 따른 조직 특성 변화)

  • Do, Kyoung-Rok;Choi, Sung-Hyun;Kwon, Young-Sam;Cho, Kwon-Koo;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.312-318
    • /
    • 2010
  • High speed steels (HSS) were used as cutting tools and wear parts, because of high strength, wear resistance, and hardness together with an appreciable toughness and fatigue resistance. Conventional manufacturing process for production of components with HSS was used by casting. The powder metallurgy techniques were currently developed due to second phase segregation of conventional process. The powder injection molding method (PIM) was received attention owing to shape without additional processes. The experimental specimens were manufactured with T42 HSS powders (59 vol%) and polymer (41 vol%). The metal powders were prealloyed water-atomised T42 HSS. The green parts were solvent debinded in normal n-Hexane at $60^{\circ}C$ for 24 hours and thermal debinded at $N_2-H_2$ mixed gas atmosphere for 14 hours. Specimens were sintered in $N_2$, $H_2$ gas atmosphere and vacuum condition between 1200 and $1320^{\circ}C$. In result, polymer degradation temperatures about optimum conditions were found at $250^{\circ}C$ and $480^{\circ}C$. After sintering at $N_2$ gas atmosphere, maximum hardness of 310Hv was observed at $1280^{\circ}C$. Fine and well dispersed carbide were observed at this condition. But relative density was under 90%. When sintering at $H_2$ gas atmosphere, relative density was observed to 94.5% at $1200^{\circ}C$. However, the low hardness was obtained due to decarbonization by hydrogen. In case of sintering at the vacuum of $10^{-5}$ torr at temperature of $1240^{\circ}C$, full density and 550Hv hardness were obtained without precipitation of MC and $M_6C$ in grain boundary.

Effects of Ripening Temperature on Starch Structure and Storage Protein Characteristics of Early Maturing Rice Varieties during Grain Filling (조생종 벼의 평야지 재배에 따른 등숙 온도 차이에 의한 전분구조 및 종자 저장단백질 특성 연구)

  • Kwak, Jieun;Lee, Jeom-Sig;Won, Yong-Jae;Park, Hyang-Mee;Kwak, Kang-Su;Kim, Mi-Jung;Lee, Choon-Ki;Kim, Sun-Lim;Yoon, Mi-Ra
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • This study was performed to understand the effects of filling stage temperature on the characteristics of starch and storage protein and the quality of rice grains. Eight early maturing rice varieties were cultivated in Cheolweon (latitude $38^{\circ}15^{\prime}N$) and Suwon (latitude $37^{\circ}16^{\prime}N$) areas in Korea. Rice grown in Suwon, with relatively high ripening period temperatures, showed significantly reduced head rice ratio and eating qualities, higher protein and lower amylose contents than rice grown in Cheolweon. In rice that ripened under high temperature conditions, the starch contained significantly less short-chain amylopectin (DP < 12) but more intermediate- (DP 13-24) and long- (DP > 25) chain amlylopectin compared to rice that ripened under normal conditions. In addition, the electrophoretic pattern of rice storage protein under high- temperature conditions revealed decreased prolamin and increased glutelin contents.

Mineralogy and Geochemistry of Green-colored Cr-bearing Sericite from Hydrothermal Alteration Zone of the Narim Gold Deposit, Korea (나림 금광상의 열수변질대에서 산출되는 녹색크롬-견운모의 광물학적 및 지구화학적 특징)

  • Lee, Hyun Koo;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.279-289
    • /
    • 1997
  • Dark to pale green-colored, Cr-bearing sericites from hydrothermal alteration zone of the Narim gold deposit were investigated mineralogically and geochemically. The alteration zone is composed mineralogically of quartz, carbonate minerals and green sericite with minor amounts of chlorite, barite and sulfide minerals (pyrite, sphalerite, galena). The zone is enriched in As (967 to 1520 ppm), Cu (31 to 289 ppm), Ni (1027 to 1205 ppm), Pb (0.20 to 1.24 wt.%) and Zn (1.03 to 1.07 wt. %) compared with fresh rocks such as granitic gneiss, porphyritic biotite granite and basic dyke. The Cr, probably the chromophore element, is highly enriched in the alteration zone (1140 to 1500 ppm), host granitic gneiss (1200 ppm) and porphyritic biotite granite (1200 ppm). Occurrence and grain size of sericite are diverse, but most of the Cr-bearing sericites (150 to $200{\mu}m$ long and 20 to $30{\mu}m$ wide) occur along the boundaries between ore veins and host rocks (especially basic dyke and granitic gneiss). X-ray diffraction data of the sericite show its monoclinic form with unit-cell parameters of $a=5.202{\AA}$, $b=8.994{\AA}$, $c=20.103{\AA}$, ${\beta}=95.746^{\circ}$ and $V=935.83{\AA}^3$, which are similar with the normal 2M1-type muscovite. Representative chemical formula of the sericite is ($K_{1.54}Ca_{0.03}Na_{0.01}$)($Al_{3.42}Mg_{0.38}Cr_{0.14}Fe_{0.06}V_{0.02}$)($Si_{6.69}Al_{1.31}$)$O_{20}(OH)_4$. The Cr content increases with decrease of the octahedral Al content, and ranges from 0.36 to 2.58 wt.%. DTA and TG curves of the sericite show endothermic peaks at $342^{\circ}$ to $510^{\circ}$, $716^{\circ}$ to $853^{\circ}$ and $1021^{\circ}C$, which are due to the expulsion of hydroxyl group. The total weight loss by heating is measured to be about 8.8 wt. %, especially at $730^{\circ}C$. Infrared absorption experiments of the sericite show broad absorption band due to the O-H bond stretching vibration near the $3625cm^{-1}$, coupled with the 825 and $750cm^{-1}$ doublet. The vibration bands related with the H-O-Al and Si-O-Al bonds occur at $1030cm^{-1}$ and 500 to $700cm^{-1}$, respectively. Based on paragonite content of the sericite, the formation temperature of the Narim gold deposit is calculated to be $220{\pm}10^{\circ}C$.

  • PDF

Shear Strength Characteristics of Weathered Granite Soil below the Freezing Point (동결온도 조건에서의 화강풍화토 전단강도 특성에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.19-29
    • /
    • 2013
  • Analysis via classical soil mechanics theory is either ineffective or inappropriate for fully describing stress distribution or failure conditions in cold regions, since mechanical properties of soils in cold regions are different from those reported in the classical soil mechanics theory. Therefore, collecting and analyzing technical data, and systematic and specialized research for cold regions are required for design and construction of the structure in cold regions. Freezing and thawing repeat in active layer of permafrost region, and a loading condition affecting the structure changes. Therefore, the reliable analysis of mechanical properties of frozen soils according to various conditions is prerequisite for design and construction of the structure in cold regions, since mechanical properties of frozen soils are sensitive to temperature condition, water content, grain size, relative density, and loading rate. In this research, the direct shear apparatus which operates at 30 degrees below zero and large-scaled low temperature chamber are used for evaluating shear strength characteristics of frozen soils. Weathered granite soil is used to analyzed the shear strength characteristics with varying freezing temperature condition, vertical confining pressure, relative density, and water content. This research shows that the shear strength of weathered granite soil is sensitively affected by various conditions such as freezing temperature conditions, normal stresses, relative densities, and water contents.

Syntheses, Dielectric Properties and Ordering Structures of $Pb(Fe _{1/2}Ta_{1/2})O_3$ ($Pb(Fe _{1/2}Ta_{1/2})O_3$의 합성, 유전특성 및 질서배열구조)

  • 우병철;김병국;김병호
    • Korean Journal of Crystallography
    • /
    • v.13 no.3_4
    • /
    • pp.165-171
    • /
    • 2002
  • Single phase $Pb(Fe_{1/2}Ta_{1/2})O_3$, ceramics were successfully synthesized from the powders prepared by solid state reaction (sintering temperature: $1100^{\circ}C$, density: $9.3g/cm^3$, average grain size: $5.1{\pm}1.2mm$, space group: Pm3m). Their dielectric properties measured at $-150{\sim}50^{\circ}C$ showed the maximum relative dielectric constant of 31000 at $-41^{\circ}C$. 1 kHz, and typical relaxor ferroelectrics characteristics such as diffuse phase transition and dielectric relaxation phenomena. However, the diffuseness of phase transition decreased and the dielectric properties became more normal ferroelectrics as the time of annealing at $1000^{\circ}C$ increased. By using Raman spectroscopy, it was revealed that the $Fe^{3+}$ and $Ta^{5+}$ ions in the as-sintered $Pb(Fe_{1/2}Ta_{1/2})O_3$, are stoichiometrically 1 : 1 ordered within the short-range that can not be probed even by transmission electron microscopy, and this stoichiometric 1 : 1 ordering is enhanced by the annealing. The relaxor ferroelectric characteristics in the as-sintered $Pb(Fe_{1/2}Ta_{1/2})O_3$, could be correlated with the stoichiometric 1 : 1 short-range ordering of B-site cations, and the decrease of relaxor ferroelectric characteristics in the annealed $Pb(Fe_{1/2}Ta_{1/2})O_3$ could be correlated with the enhanced stoichiometric 1 : 1 short-range ordering of B-site cations.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.