• Title/Summary/Keyword: Normal force

Search Result 1,328, Processing Time 0.033 seconds

Characteristics for Gait of the Induced Equinus in Normal Subjects (정상인에서 유도된 첨족에 따른 신체 보행의 특성)

  • Woo, Byung-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.435-443
    • /
    • 2014
  • The purposes of this study was to investigate the physical compensation for gait on induced equinus in normal subjects. Ten subjects were participate in the experiment (age: $23.8{\pm}2.8yrs$, height: $177.3{\pm}4.3cm$, weight: $70.8{\pm}4.6kg$). The study method adopted 3D analysis with six cameras and ground reaction force with two force-plate. Induced equinus were classify as gait pattern on unilateral and bilateral equinus. The results were as follows; In displacement of COM, medio-lateral and anterior-posterior COM were no significant, but in vertical COM, unilateral equinus gait was higher than bilateral equinus gait. In displacement hip joint, left hip joint was more extended in FC1 and FC2 during unilateral equinus gait. In displacement knee joint, left knee joint was more extended in FC2, right knee joint was more extended in all event during unilateral equinus gait. In trunk tilt, unilateral equinus gait was more forward tilt in TO1 and TO2. ROM of each joint was no significant. In Displacement of pelvic tilt angle, X axis of unilateral equinus gait was more increase than bilateral equinus gait at FC2, TO2 and MS2. Y axis of unilateral equinus gait was more increase than bilateral equinus gait at MS1, FC2 and MS2. Z axis was no significant in both equinus gait. In GRF, right Fx and Fy were no significant in both equinus gait, Fz was more bigger vertical force in bilateral equinus gait. Left Fx was more bigger internal force in unilateral equinus gait, Fy and Fz were no significant in both equinus gait.

LIM Vector Control for Magnetic Levitation Considering Normal Force (수직력을 고려한 자기부상열차의 LIM 벡터제어기법)

  • Song, Woo-Hyun;Yoo, Sung-Hwan;Kim, Jun-Seok;Lim, Jae-Won;Park, Doh-young
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.177-178
    • /
    • 2013
  • To implement servo system using LIM, thrust and normal force control must be made in a moment. Thus, vector control is required to control magnetic flux and toque. In this paper, we applied to constant slip frequency vector control method by controlling d-q axis current and presented various simulation results.

  • PDF

THREE-DIMENSIONAL CRYSTALLIZING ${\pi}-BONDINGS,\;{\pi}-FAR$ INFRARED RAYS AND N-MACHINE

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.34-44
    • /
    • 1996
  • N-machine produces more than input energy at above 3000 rpm. any space energy is absorbed when the N-machine is rotating at a very high velocity. Laws of electromagnetics verify that normal conduction is due to that electrons moves from one three-dimensional crystallizing ${\pi}-bonding$ orbital to next. The ${\pi}-far$ infrared rays are generated from the resonance and rotation of the electrons on the orbitals of three-dimensional crystallizing ${\pi}-bonding$ atoms. Material in universe is composed of ${\pi}-rays$, which have alternative outward electric field. If the alternative outward electric fields of the ${\pi}-rays$ are resonant each other they make attraction force, which is the gravity. The collection of space energy is due to a attraction force between the radially alternating electric field and the ${\pi}-far$ infrared rays in the space. Electrons flow by absorbed density difference of ${\pi}-far$ infrared rays along a conduction wire, which also verifies that normal electron conduction is due to a flow from one three-dimensional crystallizing ${\pi}-bonding$ orbital to next.

  • PDF

A Study on the Thrust and Normal force Characteristics by Tooth Shapes of HLSM (HLSM의 치 형상에 따른 추력 및 수직력 특성에 관한 연구)

  • 이상호;오홍석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.318-324
    • /
    • 2004
  • In the recently, the necessity of linear position control motors have been increased in the various fields of the automatic control system. In this paper, we have designed the tooth models of the hybrid type linear stepping motor(HLSM); rectangular type(RT), triangle type(TrT), round type(RdT) and wedge type(WT), and proposed the optimum tooth shape of the HLSM by simulating(Flux2D) the thrust and normal force characteristics with the finite element method(FEM) and the virtual work method. And we have manufactured the prototype HLSM with the optimum tooth, and measured the various values by using experimental system. Thus, we have confirmed the justice of theory because the computed and the experimental results almost coincide with.

Estimation of Ship Collision Energy with Bridge (교량의 선박충돌 에너지 산정)

  • Lee Seong-Lo;Kang Sung-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.416-419
    • /
    • 2004
  • The kinetic energy during ship collision with bridge piers is released as the permanent deformations of structure and friction between the impact surfaces. So the ship collision energy is estimated from the equations of motions for ship-pier collisions which include the influence of the surrounding water, different impact angles and impact locations. The normal impact energy and tangent impact energy at a collision location and angle can be transformed into the normal impact force and friction force acting on the structure. Also the kinetic energy after collisions is calculated from the linear and angular impulse of ship collisions. The collision energy absorption system such as the protective structures for bridges is designed by evaluating the damage portions of ship and structure during the ship-structure collisions varying from the soft impact to hard impact and then the estimation of it will be suited for the design of protective measures.

  • PDF

Behavior Analysis of Double Lip Seal with Interference (간섭량에 따른 이중 립 실의 거동 해석)

  • Jung, H.G.;Yoo, J.C.;Park, T.J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1576-1580
    • /
    • 2007
  • Typical lip seals are widely used as sealing mechanism of rotary and reciprocating shaft. Double lip seal has comparatively high stiffness and dynamic radial eccentricity. Usually material of these seals is made of elastomer and nonlinear finite element analysis is required to analyze behaviour of this material because Young's modulus is varied with working load. In this paper, MSC MARC/MENTAT is used for nonlinear analysis of double lip seal with pressure variation and interference. The contact normal force of double lip seal between lip and shaft is analyzed to reduce power loss when shaft rotates.

  • PDF

On the Forced Vibration in the Nonlinear Symmetric Structure by Using the Normal Modes (정규모우드를 활용한 비선형 대칭구조물의 강제진동해석)

  • 박철희;최성철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.21-28
    • /
    • 1994
  • The forced vibration with the symmetric boundary condition in nonlinear structure is studied by utilizing the characteristic of the free vibration which have two modes with the similar natural frequency. Two linear modes exist to have no concern with the amplitude. It is found that the normal mode or elliptic orbit as the newly coupled modes is generated in accordance with changing the stability. It is also known that responses for forced vibration having the small external force and damping are near mode of free vibration and the stability for each response is determined according to the stability for each response is determined according to the stability in mode of free vibration. Finally the stability and bifurcation are analyzed in proportion to increment of external force and damping.

  • PDF

A Study on thrust characteristics of 2-Phase Hybrid type DVT Linear Stepping Motor (2상 HB형 DVT 직선추진형 STEPPING 전동기의 추력특성에 관한 연구)

  • Jang, H.;Shin, M.Y.;Lee, S.H.;Park, J.K.;Jung, D.Y.;Park, H.Y.;Lee, B.S.;Ha, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.792-794
    • /
    • 2001
  • In this paper, We have designed the new model in order to the thrust and normal force of HLSM. Also it was analyzed by Finite Element Method and Virtual Work Method. As a result this paper, it was confirmed that the thrust and normal force was improved considerably.

  • PDF

Molecular Dynamics Simulation of Friction and Wear Behavior Between Carbon and Copper (탄소와 구리의 마찰 및 마모에 관한 분자 동역학 시뮬레이션)

  • Kim Kwang-Seop;Kang Ji-Hoon;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.102-108
    • /
    • 2004
  • In this paper, friction and wear behaviors between monocrystalline, defect-free copper and carbon on the atomic scale are investigated by using 2-dimensional molecular dynamics simulation. It is assumed that all interatomic forces are given by Morse potential. The deformation of carbon is assumed to be neglected and vacuum condition is also assumed. Average friction and normal forces for various surface conditions, various scratch speeds and scratch depths are obtained from simulations. Changes of wear behaviors for various scratch speeds and surface conditions are investigated by observing snapshots in scratch process. The effects of surface conditions, scratch speeds, and scratch depths on the friction force, normal force, and friction coefficient are also investigated.

The Benefits of Stick Walking: Evaluation at Ankle, Knee and Hip Joints

  • Kim, Suk-Won;Lee, Jung-Yong;Park, Ki-Won;Yoon, Hoon-Yong;Park, Sung-Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.63-71
    • /
    • 2005
  • A laboratory study was performed to evaluate the effects of an aid(i.e. stick) on joint loadings. Six healthy young participants were recruited from Virginia Tech student population. Each participant has performed three normal walking and three stick walking trials. Normalized and integrated, ground reaction forces(GRFs) and joint moments were measured at ankle, knee, and hip joints from kinematic and kinetic data. The result suggests that stick walking significantly reduces vertical ground reaction force and joint moments at ankle and knee compared to normal walking.