• 제목/요약/키워드: Normal element

검색결과 1,216건 처리시간 0.025초

유한요소 다결정 모델을 이용한 마그네슘 합금 AZ31B 판재의 압연 집합 조직 예측 (Prediction of Rolling Texture for Mg Alloy AZ31B Sheet using Finite Element Polycrystal Model)

  • 원성연;김영석;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.72-82
    • /
    • 2004
  • The deformation mechanism of hexagonal close-packed materials is quite complicate including slips and twins. A deformation mechanism, which accounts for both slip and twinning, was investigated for polycrystalline hop materials. The model was developed in a finite element polycrystal model formulated with initial strain method where the stiffness matrix in FEM is based on the elastic modulus. We predicted numerically the texture of Mg alloy(AZ31B) sheet by using FEM based on crystal plasticity theory. Also, we introduced the recrystallized texture employed the maximum energy release theory after rolling. From the numerical study, it was clarified that the shrink twin could not be the main mechanism for shortening of c-axis, because the lattice rotation due to twin rejects fur c-axis to become parallel to ND(normal direction of plate). It was showed that the deformation texture with the pyramidal slip gives the ring type pole figure having hole in the center.

  • PDF

개량박막 유한요소법에 의한 두가지 블랭크로부터의 사각컵 딥드로잉 성형해석 (Analysis of Square Cup Deep Drawing from two Types of Blanks with a Modified Membrane Finite Element Method)

  • 허훈;한수식
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2653-2663
    • /
    • 1994
  • The design of sheet metal working processes is based on the knowledge about the deformation mechanism and the influence of the process parameters. The typical geometric process parameters are the die geometry, the initial sheet thickness, the initial blank shape, and so on. The initial blank shape is of vital importance in the most sheet metal forming operations, especially in the deep drawing process, since the forming load and the strain distribution are significantly affected by the shape of an initial blank. The influence of the initial blank shape on a square cup deep drawing process is investigated by the numerical simulation and the experiment. The numerical simulation is carried out by a modified membrane finite element method which takes bending deformation into account. The numerical and experi-mental results show that the initial blank shape have strong influence on the forming load and the strain distribution. The numerical results are compared with the experimental results and other numerical results which are calculated with the membrane theory.

Finite element analysis of RC walls with different geometries under impact loading

  • Husem, Metin;Cosgun, Suleyman I.;Sesli, Hasan
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.583-592
    • /
    • 2018
  • Today, buildings are exposed to the effects such as explosion and impact loads. Usually, explosion and impact loads that act on the buildings such as nuclear power plants, airports, defense industry and military facilities, can occur occasionally on the normal buildings because of some reasons like drop weight impacts, natural gas system explosions, and terrorist attacks. Therefore, it has become important to examine the behavior of reinforced concrete (RC) structures under impact loading. Development of computational mechanics has facilitated the modeling of such load conditions. In this study, three kinds of RC walls that have different geometric forms (square, ellipse, and circle) and used in guardhouses with same usage area were modeled with Abaqus finite element software. The three configurations were subjected to the same impact energy to determine the geometric form that gives the best behavior under the impact loading. As a result of the analyses, the transverse impact forces and failure modes of RC walls under impact loading were obtained. Circular formed (CF) reinforced concrete wall which has same impact resistance in each direction had more advantages. Nonetheless, in the case of the impact loading occurring in the major axis direction of the ellipse (EF-1), the elliptical formed reinforced concrete wall has higher impact resistance.

Chlorella 의 물질대사에 미치는 미양원소의 결핍효과 1 (제 1 ) -생 및 광합성 에 관하여- (Effect of micronutritional-element deficienies on the metabolism of Chlorella cells. (I) -On the growth rate, respiation and photosynthesis-)

  • 이영록;진평;심웅섭
    • 미생물학회지
    • /
    • 제5권1호
    • /
    • pp.15-19
    • /
    • 1967
  • Chlorella ellipsoidea cells were cultured in an iron, copper, zinc, manganese, molybdenum or boron-free medium. Physiological activities such as growth rate, reproduction, endogenous and glucose respiration, photosynthetic activity and biosythesis of chlorophyll of the micro-element definition cells were measured. It generally, growth rate, respiratory and photosynthetic activities, and biosynthesis of chlorophyll of the micro-element deficient cells decreased more or less, compared with those of the normal cells. The growth of the algal cells in an iron-free medium were retarded severely with the chlorosis, and the photosynthetic activity of the cells decreased remarkably even though the low content of chlorophyll in the cells owing to the iron-deficiency is considered. Therefore, it is deduced that iron takes part in the photosynthetic process itself, possibly by its participation in the photo phosphorylation coupled with electron transport. Respiratory activity of boron-deficient cells showed the most severe decrease whereas those of the molybdenum-deficient cells showed very slight decrease in spite of severe growth retardation.

  • PDF

질량신정의 구현을 위한 NPL 와트발란스 나이프에지의 기계적 특성 분석 (An Analysis of the Mechanical Characteristics of the Knife Edges used in the NPL Watt Balance)

  • 최인묵;;우삼용
    • 한국정밀공학회지
    • /
    • 제25권4호
    • /
    • pp.61-68
    • /
    • 2008
  • Of the seven base units of the international system of units, only the kilogram is still defined in terms of a material artifact. One of the experimental approaches opening the way to a new definition of the kilogram is the watt balance To improve the performance of the NPL watt balance, we need to quantify and reduce hysteresis effects in the balance knives. In this paper, we discuss the mechanical characteristics of the knife edges used in the NPL watt balance. The hysteresis mechanism is analyzed using the finite element method. It is found that the cause of hysteresis is not normal stress but shear, and the deformation of the flat, rather than the knife, is an important factor in the hysteresis mechanism. The study presented here, using finite element analysis, suggests that parameters such as material property, tip radius and knife straightness can be more important than others, such as friction coefficient, tip angle, etc.

경계요소법을 이용한 트로소 표면전위의 계산 (The computation of the torso surface potentials using the boundary element method)

  • 이경중;이세진
    • 전자공학회논문지B
    • /
    • 제33B권8호
    • /
    • pp.22-29
    • /
    • 1996
  • 본 연구는 경계요소법을 이용하여 토르소 표면전위를 구하는 연구이다. '그린의 2차정리'로 부터 토르소 표면 전위를 구하는 지배방정식을 유도한 후 균질성, 등방성 매질인 경우에 적합한 경계요소법을 적용하였다. 구모델을 이용하여 구의 중심에 소스를 배치하고 구표면의 전위를 경계요소법으로 구한 계산치와 이론치를 비교함으로서 알고리즘의 타당성을 검증하였다. 토르소 모델에 경계요소법을 적용하여 시뮬레이션 한 결과, 심실흥분에 의한 토르소 표면 등전위도 패턴을 정상심전도의 매핑결과와 유사한 패턴을 보였다.

  • PDF

Cohesive Interface Model on Concrete Materials

  • Rhee In-Kyu;Roh Young-Sook
    • 콘크리트학회논문집
    • /
    • 제17권6호
    • /
    • pp.1053-1064
    • /
    • 2005
  • The mechanical damage of concrete is normally attributed to the formation of microcracks and their propagation and coalescence into macroscopic cracks. This physical degradation is caused from progressive and hierarchical damage of the microstructure due to debonding and slip along bimaterial interfaces at the mesoscale. Their growth and coalescence leads to initiation of hairline discrete cracks at the mesoscale. Eventually, single or multiple major discrete cracks develop at the macroscale. In this paper, from this conceptual model of mechanical damage in concrete, the computational efforts were made in order to characterize physical cracks and how to quantify the damage of concrete materials within the laws of thermodynamics with the aid of interface element in traditional finite element methodology. One dimensional effective traction/jump constitutive interface law is introduced in order to accommodate the normal opening and tangential slips on the interfaces between different materials(adhesion) or similar materials(cohesion) in two and three dimensional problems. Mode I failure and mixed mode failure of various geometries and boundary conditions are discussed in the sense of crack propagation and their spent of fracture energy under monotonic displacement control.

Evaluation of the different genetic algorithm parameters and operators for the finite element model updating problem

  • Erdogan, Yildirim Serhat;Bakir, Pelin Gundes
    • Computers and Concrete
    • /
    • 제11권6호
    • /
    • pp.541-569
    • /
    • 2013
  • There is a wide variety of existing Genetic Algorithms (GA) operators and parameters in the literature. However, there is no unique technique that shows the best performance for different classes of optimization problems. Hence, the evaluation of these operators and parameters, which influence the effectiveness of the search process, must be carried out on a problem basis. This paper presents a comparison for the influence of GA operators and parameters on the performance of the damage identification problem using the finite element model updating method (FEMU). The damage is defined as reduction in bending rigidity of the finite elements of a reinforced concrete beam. A certain damage scenario is adopted and identified using different GA operators by minimizing the differences between experimental and analytical modal parameters. In this study, different selection, crossover and mutation operators are compared with each other based on the reliability, accuracy and efficiency criteria. The exploration and exploitation capabilities of different operators are evaluated. Also a comparison is carried out for the parallel and sequential GAs with different population sizes and the effect of the multiple use of some crossover operators is investigated. The results show that the roulettewheel selection technique together with real valued encoding gives the best results. It is also apparent that the Non-uniform Mutation as well as Parent Centric Normal Crossover can be confidently used in the damage identification problem. Nevertheless the parallel GAs increases both computation speed and the efficiency of the method.

Evaluation of interfacial shear stress in active steel tube-confined concrete columns

  • Nematzadeh, Mahdi;Ghadami, Jaber
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.469-481
    • /
    • 2017
  • This paper aims to analytically investigate the effect of shear stress at the concrete-steel interface on the mechanical behavior of the circular steel tube-confined concrete (STCC) stub columns with active and passive confinement subjected to axial compression. Nonlinear 3D finite element models divided into the four groups, i.e. circumferential-grooved, talc-coated, lubricated, and normal groups, with active and passive confinement were developed. An innovative method was used to simulate the actively-confined specimens, and then, the results of the finite element models were compared with those of the experiments previously conducted by the authors. It was revealed that both the predicted peak compressive strength and stress-strain curves have good agreement with the corresponding values measured for the confined columns. Then, the mechanical properties of the active and passive specimens such as the concrete-steel interaction, longitudinal and hoop stresses of the steel tube, confining pressure applied to the concrete core, and compressive stress-strain curves were analyzed. Furthermore, a parametric study was performed to explore the effects of the concrete compressive strength, steel tube diameter-to-wall thickness ratio, and prestressing level on the compressive behavior of the STCC columns. The results indicate that reducing or removing the interfacial shear stress in the active and passive specimens leads to an increase in the hoop stress and confining pressure, while the longitudinal stress along the steel tube height experiences a decrease. Moreover, prestressing via the presented method is capable of improving the compressive behavior of STCC columns.

반복경계조건을 도입한 3차원 유한요소법에 의한 회전탄대의 소성변형 공정해석 (Plastic Deformation Analysis of Rotating Band by Three-Dimensional Finite Element Method Using Recurrent Boundary Condition)

  • 양동열;이영규;박용복;조용찬;한만준
    • 소성∙가공
    • /
    • 제5권2호
    • /
    • pp.122-129
    • /
    • 1996
  • The main objective of the study is to offer some basic information in relation to optimal shape and dimensions of the rotating band through the development of three-dimensional finite element method for metal forming analysis of the rotating band whose primary function is to impart spin to the projectile. The three-dimensional metal forming analysis of the rotating band has perfor-med by using recurrent boundary conditions. Such design factors as the outside diameter the total length and the profile of the rotating band must be considered carefully in order to design an optimal rotating band. Above design factors can be determined from such available analysis results as the deformed shape and the deformation load. of the rotating band and the normal pressure of the rotating band on a projectile shell. The remeshings are needed to carry out plastic deformation analysis with severe deformation through which the complete process analysis gets possible. The results can be utilized effectively in determining the optimal shape and size of the rotating band.

  • PDF