• Title/Summary/Keyword: Normal element

Search Result 1,208, Processing Time 0.033 seconds

Sensitivity analysis for optimal design of piezoelectric structures (압전지능구조물의 최적설계를 위한 민감도 해석)

  • 김재환
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.267-273
    • /
    • 1998
  • This study aims at performing sensitivity analysis of piezoelectric smart structure for minimizing radiated noise from the structure, The structure consists of a flat plate on which disk shaped piezoelectric actuator is mounted, and finite element modeling is used for the structure. The finite element modeling uses a combination of three dimensional piezoelectric, flat shell and transition elements so thus it can take into account the coupling effects of the piezoelectric device precisely and it can also reduce the degrees of freedom of the finite element model. Electric potential on the piezoelectric actuator is taken as a design variable and total radiated power of the structure is chosen as an objective function. The objective function can be represented as Rayleigh's integral equation and is a function of normal displacements of the structure. For the convenience of computation, all degrees of freedom of the finite element equation is condensed out except the normal displacements of the structure. To perform the design sensitivity analysis, the derivative of the objective function with respect to the normal displacements is found, and the derivative of the norma displacements with respect to the design variable is calculated from the finite element equation by using so called the adjoint variable method. The analysis results are compared with those of the finite difference method, and shows a good agreement. This sensitivity analysis is faster and more accurate than the finite difference method. Once the sensitivity analysis program is used for gradient-based optimizations, one could achieve a better convergence rate than non-derivative methods for optimal design of piezoelectric smart structures.

  • PDF

Analysis of Deep Drawing of Planar Anisotropic Materials Using the Rigid- Plastic Finite Element Method (강소성 유한요소법을 이용한 평면 이방성 재료의 디프 드로잉 해석)

  • 김형종;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.248-258
    • /
    • 1992
  • Three-dimensional rigid-plastic finite element formulation based on the membrane theory was described and a computer program for large deformation analysis was developed. In the formulation, normal and planar anisotropy of sheet material and rotation of the principal axes of anisotropy was taken into consideration. Sheet metal was assumed to be rigid-plastic material obeying Hill's quadratic yield criterion and its associated flow rule. Deep drawing process, as a preliminary test, for normal anisotropic material was analyzed in order to examine the validity of developed finite element program. The results were consistent with the existing finite element solutions or experimental data. The present study was mainly concerned with the influence of planar anisotropy on deformation behaviour. Finite element analysis and experiment were carried out for the whole process of deep drawing of planar anisotropic material. The computational and experimental results on the shape of ear, strain distribution and punch load were in good agreement.

ON THE APPLICATION OF MIXED FINITE ELEMENT METHOD FOR A STRONGLY NONLINEAR SECOND-ORDER HYPERBOLIC EQUATION

  • Jiang, Ziwen;Chen, Huanzhen
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.1
    • /
    • pp.23-40
    • /
    • 1998
  • Mixed finite element method is developed to approxi-mate the solution of the initial-boundary value problem for a strongly nonlinear second-order hyperbolic equation in divergence form. Exis-tence and uniqueness of the approximation are proved and optimal-order $L\infty$-in-time $L^2$-in-space a priori error estimates are derived for both the scalar and vector functions approximated by the method.

FINITE VOLUME ELEMENT METHODS FOR NONLINEAR PARABOLIC INTEGRODIFFERENTIAL PROBLEMS

  • Li, Huanrong;Li, Qian
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.35-49
    • /
    • 2003
  • In this paper, finite volume element methods for nonlinear parabolic integrodifferential problems are proposed and analyzed. The optimal error estimates in $L^p\;and\;W^{1,p}\;(2\;{\leq}\;p\;{\leq}\;{\infty})$ as well as some superconvergence estimates in $W^{1,p}\;(2\;{\leq}\;p\;{\leq}\;{\infty})$ are obtained. The main results in this paper perfect the theory of FVE methods.

  • PDF

Investigation of cold-formed stainless steel non-slender circular hollow section columns

  • Ellobody, Ehab;Young, Ben
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.321-337
    • /
    • 2007
  • The investigation on the behaviour of cold-formed stainless steel non-slender circular hollow section columns is presented in this paper. The normal strength austenitic stainless steel type 304 and the high strength duplex materials (austenitic-ferritic approximately equivalent to EN 1.4462 and UNS S31803) were considered in this study. The finite element method has been used to carry out the investigation. The columns were compressed between fixed ends at different column lengths. The geometric and material nonlinearities have been included in the finite element analysis. The column strengths and failure modes were predicted. An extensive parametric study was carried out to study the effects of normal and high strength materials on cold-formed stainless steel non-slender circular hollow section columns. The column strengths predicted from the finite element analysis were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. The numerical results showed that the design rules specified in the American, Australian/New Zealand and European specifications are generally unconservative for the cold-formed stainless steel non-slender circular hollow section columns of normal and high strength materials, except for the short columns and some of the high strength stainless steel columns. Therefore, different values of the imperfection factor and limiting slenderness in the European Code design rules were proposed for cold-formed stainless steel non-slender circular hollow section columns.

Investigation on effect of neutron irradiation on welding residual stresses in core shroud of pressurized water reactor

  • Jong-Sung Kim;Young-Chan Kim;Wan Yoo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.80-99
    • /
    • 2023
  • This paper presents the results of investigating the change in welding residual stresses of the core shroud, which is one of subcomponents in reactor vessel internals, performing finite element analysis. First, the welding residual stresses of the core shroud were calculated by applying the heat conduction based lumped pass technique and finite element elastic-plastic stress analysis. Second, the temperature distribution of the core shroud during the normal operation was calculated by performing finite element temperature analysis considering gamma heating. Third, through the finite element viscoelastic-plastic stress analysis using the calculated temperature distribution and setting the calculated residual stresses as the initial stress state, the variation of the welding residual stresses was derived according to repeating the normal operation. In the viscoelastic-plastic stress analysis, the effects of neutron irradiation on mechanical properties during the cyclic normal operations were considered by using the previously developed user subroutines for the irradiation agings such as irradiation hardening/embrittlement, irradiation-induced creep, and void swelling. Finally, the effect of neutron irradiation on the welding residual stresses was analysed for each irradiation aging. As a result, it is found that as the normal operation is repeated, the welding residual stresses decrease and show insignificant magnitudes after the 10th refueling cycle. In addition, the irradiation-induced creep/void swelling has significant mitigation effect on the residual stresses whereas the irradiation hardening/embrittlement has no effect on those.

An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations

  • Lezgy-Nazargah, M.;Meshkani, Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.665-676
    • /
    • 2018
  • In this study, a four-node quadrilateral partial mixed plate element with low degrees of freedom (dofs) is developed for static and free vibration analysis of functionally graded material (FGM) plates rested on Winkler-Pasternak elastic foundations. The formulation of the presented finite element model is based on a parametrized mixed variational principle which is developed recently by the first author. The presented finite element model considers the effects of shear deformations and normal flexibility of the FGM plates without using any shear correction factor. It also fulfills the boundary conditions of the transverse shear and normal stresses on the top and bottom surfaces of the plate. Beside these capabilities, the number of unknown field variables of the plate is only six. The presented partial mixed finite element model has been validated through comparison with the results of the three-dimensional (3D) theory of elasticity and the results obtained from the classical and high-order plate theories available in the open literature.

An Isoparmetric Kiscrete Joint Element with Joint Surface Degradation (절리면 거\ulcorner각의 손상을 고려한 개별체 절리 유한요소)

  • 이연규;이정인
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.20-30
    • /
    • 1997
  • A discrete joint finite element with joint surface degradation was developed to investigate the shear behavior of rough rock joint. Isoparametric formulation was used for facilitating the implementation of the element in existing Finite Element Codes. The elasto-plastic joint deformation model with the discontinuity constitutive law proposed by Plesha was applied to the element. The reliability of the developed finite element code was successfully testified through numerical direct shear tests conducted under both constant normal stress and constant normal displacement conditions. The result of the numerical direct shear test showed that the code can capture characteristic deformation features envisaged in the direct shear test of rough rock joint.

  • PDF

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.

A COMPARATIVE STUDY ON THE COMPOSITE RESTORATION DESIGN AND PLACEMENT METHODS USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS (광중합 콤포짓트레진의 수복형태 및 방법에 관한 삼차원 유한요소분석법적 비교 연구)

  • Lee, Jung-Taek;Yim, Soon-Ho;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.133-149
    • /
    • 1998
  • Clinical application of composite resin recently draw great concerns in dentistry. Especially due to advantages such as esthetics, adhesiveness, simple clinical procedures, various shapes and kinds of composite resins are widely being applied to prosthodontics, conservative dentistry, and orthodontics. But, clinical problems attributable to the polymerization shrinkage of composite resin have been proposed, and we have to regard clinical problems such as secondary caries, loss of restoration, fracture of the surrounding tooth structure, marginal discoloration, and tooth sensitivity, and many portions are remained to be overcome. Therefore, this study attempts to analyze stress distribution between resin and tooth structure which is generated during polymerization shrinkage of composite resin using three dimensional finite element method. Three dimensional finite element models with conventional box-shape cavity and erosion/abrasion type V-shape lesion cavity in upper central incisor were developed. These cavities were filled with four different types of placement techniques. (bulk filling, horizontal increment filling, oblique occlusal increment filling, oblique gingival increment filling) The stresses generated by polymerization shrinkage of composite resin were calculated. The results analyzed with three dimensional finite element method were as follows : 1. The increment filling technique showed the highest maximum normal stress in both conventional box-shape and V-shape cavities and showed a tendency to decrease after complete polymerization. 2. The bulk filling technique resulted in increased stresses during the curing process in both conventional box-shape and V-shape cavities and the highest maximum normal stress occurred after complete polymerization. 3. The bulk filling resulted in the lowest maximum normal stress in both box-shape and V-shape cavities 4. Regardless of placement method, in conventional box-shape cavity, the maximum normal stress increased in dentin floor, enamel, dentin sequence and in V-shape cavity, the maximum normal stress increased in enamel, dentin sequence.

  • PDF