• Title/Summary/Keyword: Normal brain of rats

Search Result 193, Processing Time 0.024 seconds

Neuroprotective Efects of Gagam-ChongMeong-Tang on Cognitive Function after Ischemic Brain Injury in Rats (허혈성 뇌손상 백서에서 가감총명탕(加減聰明湯)이 인지기능에 미치는 효과)

  • Kim, Kyung-Yoon;Kim, Hyung-Woo;Lee, Sang-Yeong;Cha, Dae-Yeon;Lee, Seok-Jin;Kim, Gye-Yep;Kim, Hang-Jung;Jeong, Hyun-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.556-561
    • /
    • 2008
  • ChongMyeong-Tang (CMT) have been used clinically to treat patient with amnesia and dementia. In addition, CMT have been also used for examinee to improve learning ability in Korea. This study was designed to investigate the effects of Gagam-ChongMeong-Tang (GCMT) on cognitive dysfunction recovery after ischemic brain injury in rats. Rats were divided into three groups; (1) normal, (2) commercial diet after ischemic brain injury (control), (3) CMT diet after ischemic brain injury (experiment). In our study, we carried out Morris water maze test for cognitive motor behavior test and immunohistochemistry study through the change BDNF in the hippocampus($7^{th},\;14^{th}\;day$). In Morris water maze test, cognitive motor function recovery was significantly increased in the experiment group as compared with control group on $7^{th}\;and\;14^{th}\;day$ day (p<0.01). In immunohistochemistric response of BDNF in the hippocampus, more immune reaction was investigated in the experiment group as compared with control group on $7^{th}\;and\;14^{th}\;day$. Especially more immune reaction was experimented $14^{th}$ day. These results imply that GCMT can play a role in facilitating recovery of cognitive function after ischemic brain injury in rats.

Effect of Chungpaesagan-tang on Ischemic Damage Induced by Middle Cerebral Artery Occlusion in Diabetic Rats (청폐사간탕이 탕요유발 흰주의 뇌허혈손상에 미치는 영향)

  • Jeong Chun-geun;Kim Eun-Young;Shin Jung-Won;Sohn Youngjoo;Lee Hyun-Sam;Jung Hyuk-Sang;Sohn Nak-Won
    • The Journal of Korean Medicine
    • /
    • v.26 no.2 s.62
    • /
    • pp.217-230
    • /
    • 2005
  • Objectives: Chungpaesagan-tang (CPSGT), which is frequently used for treating patients of cerebrovascular disease, has not been reported by clinical doctors concerning the effect of neuronal aptosis caused by brain ischemia. To study the effect of CPSGT on focal cerebral ischemia in normal and diabetic rats and SHR, focal cerebral ischemia was induced by transient MCAO, and after onset CPSGT was administrated. Methods: Rats (Sprague-Dawley) were divided into four groups: sham-operated group, MCA-occluded group, CPSGT­administrated group after MCA occlusion, and normal group. The MCA was occluded by intraluminal method. CPSGT was administrated orally twice (l and 4 hours) after middle cerebral artery occlusion. All groups were sacrificed at 24 hours after the surgery. The brain tissue Was stained with $2\%$ triphenyl tetrazolium chloride (TTC) or $1\%$ cresyl violet solution, to examine effect of CPSGT on ischemic brain tissue. The blood samples were obtained from the heart.~. Tumor necrosis $factor-\alpha$ level and interleukin-6 level of serum was measured from sera using enzyme-linked immunoabsorbent assay (ELISA). Then changes of immunohistochemical expression of $TNF-\alpha$ in ischemic damaged areas were observed. Results: In NC+MCAO+CP and DM+MCAO+CP, CPSGT significantly (p<0.01) decreased the number of neuron cells compared to the control group. CPSGT markedly reduced (p<0.01) the infarct size of the forebrain in distance from the interaural line on cerebral ischemia in diabetic rats. CPSGT significantly reduced the $TNF-\alpha$ expression in penumbra region of damaged hemisphere in diabetic rats. Conclusions: CPSGT had a protective effect on cerebral ischemia in SD rats, especially in diabetic rats compared with normal SD rats.

  • PDF

Effects of Dietary Protein Levels on Organ Growth and Protein Metabolism in Early and Normally Weaned Rats (단백질 섭취수준이 조기 이유 및 정상이유 흰쥐의 기관성장과 단백질 대사에 미치는 영향)

  • 박미나
    • Journal of Nutrition and Health
    • /
    • v.31 no.1
    • /
    • pp.5-12
    • /
    • 1998
  • This study was designed to examine how dietary protein levels affect organ growth and protein metabolism in early and normally weaned rats. Early and normally weaned rats separated fro the dam on the 15th and 121st day postpartum, respectively. were fed diets containing three levels of protein : low(10%) , normal (20%),and high(40%) . On the 35th day, the weight and DNA, RNA and protein contents in brain , liver, and kidney were determined to ascertain organ and cellular growth. Furthermore, serum total protein , albumin , $\alpha$-amino N and creatine and urinary urea N, and creatinine were determined in order to ascertain protein metabolism and renal functions. Dietary protein levels were not observed to significantly affect total DNA content, which may represent an index of cell number in the liver, brain and kidney. Fresh weight and protein/DNA ratio, which may represent indices of cell size, significantly increased in proportion to dietary protein in the kidney. As for the early weaned rats , the liver cell size significantly decreased. Dietary protein levels and weaning periods did not affect serum total protein and albumin . However, serum urea-N significantly increased in proportion to dietary protein levels whereas serum $\alpha$-amino N was decreased by early weaning . Nitrogen retention was lower in early weaned rats fed low or high levels of protein than in normally weaned rats. The results demonstrate that low or high levels of dietary protein have less desirable effects on protein metabolism in prematurely weaned rats.

  • PDF

The Effect of Early Intervention and Rehabilitation in the Expression of Aquaporin-4; and Ultrastructure Changes on Rat's Offspring's Damaged Brain Caused by Intrauterine Infection

  • Kumar, Rajesh;Li, Xiaojie;Kong, Xiangying
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.1
    • /
    • pp.14-21
    • /
    • 2015
  • Objective : To study the effect of early intervention and rehabilitation in the expression of aquaporin-4 and ultrastructure changes on cerebral palsy pups model induced by intrauterine infection. Methods : 20 pregnant Wistar rats were consecutively injected with lipopolysaccharide intraperitoneally. 60 Pups born from lipopolysaccharide group were randomly divided into intervention group (n=30) and non-intervention group (n=30); intervention group further divided into early intervention and rehabilitation group (n=10), acupuncture group (n=10) and consolidate group (n=10). Another 5 pregnant rats were injected with normal saline intraperitoneally; 30 pups born from the normal saline group were taken as control group. The intervention group received early intervention, rehabilitation and acupuncture treatment. The motor functions of all pups were assessed via suspension test and modified BBB locomotor score. Aquaporin-4 expression in brain tissue was studied through immunohistochemical and western-blot analysis. Ultrastructure changes in damaged brain and control group were studied electron-microscopically. Results : The scores of suspension test and modified BBB locomotor test were significantly higher in the control group than the intervention and non intervention group (p<0.01); higher in the intervention group than the non-intervention group (p<0.01). The expression of Aquaporin-4 was lower in intervention and non intervention group than in the control group (p<0.01); also lower in non-intervention group than the intervention group (p<0.01). Marked changes were observed in ultrastructure of cortex and hippocampus CAI in brain damaged group. Conclusion : Early intervention and rehabilitation training can improve the motor function in offspring with brain injury and reduce the expression of aquaporin-4 in damaged brain.

Effects of Hyulboochucke-tang on the Collagenase-Induced Intracerebral Hemorrhage in Rats (혈부축어탕이 교원효소로 유발된 흰쥐의 뇌출혈에 미치는 영향)

  • Kim, Yong;Seo, Il-Bok;Kim, Soon-Joong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Objectives The purpose of this study was to investigate the effect of Hyulboochucke-tang on the collagenase induced intracerebral hemorrhage in white rats. Methods To identify the effect of the Hyulboochucke-tang on intracerebral hemorrhage, intracerebral hemorrhage was induced in the right caudate nuclei of white rats. For normal group (n=12) and comparative group (n=12), saline was dosed, and vaccum evaporated Hyulboochucke-tang extract was dosed to treatment group (n=12), 3 and 10 days after the collagenase injection, the body weight, the brain weight, the size of hematoma, the size of the area of malacia, the number of apoptotic cell and the change in pathological histology were observed. Results 3 days after the injection, the brain weight(g) was considerably decreased in treatment group (n=12) compared to comparative group (n=12). The brain weight after 10 days of the injection was also considerably decreased in treatment group (n=6) against comparative group (n=6). The cross section(mm) of cerebral malacia after 10 days of the injection was considerably decreased in treatment group (n=6) compared to comparative group (n=6). The number of apoptotic cell in normal intracerebral around the area of malacia did not show considerable change between treatment group and comparative group. 12 days after the injection, the multiplication of gitter cells, astrocyte and newly formed capillaries around the area of malacia was distinct. Conclusions On the basis of these results, We sugggest that Hyulboochucke-tang controls swelling caused by hemorrhage and contributes to absorption of hematoma by multiplication of newly formed capillaries and recovery of damaged cerebral tissue by multiplication of gitter cells and astrocyte.

The Neuromodulation of Neuropathic Pain by Measuring Pain Response Rate and Pain Response Duration in Animal

  • Kim, Jinhyung;Lee, Sung Eun;Shin, Jaewoo;Jung, Hyun Ho;Kim, Sung June;Chang, Jin Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • Objective : Neuropathic pain causes patients feel indescribable pain. Deep Brain Stimulation (DBS) is one of the treatment methods in neuropathic pain but the action mechanism is still unclear. To study the effect and mechanism of analgesic effects from DBS in neuropathic pain and to enhance the analgesic effect of DBS, we stimulated the ventral posterolateral nucleus (VPL) in rats. Methods : To observe the effect from VPL stimulation, we established 3 groups : normal group (Normal group), neuropathic pain group (Pain group) and neuropathic pain+DBS group (DBS group). Rats in DBS group subjected to electrical stimulation and the target is VPL. Results : We observed the behavioral changes by DBS in VPL (VPL-DBS) on neuropathic pain rats. In our study, the pain score which is by conventional test method was effectively decreased. In specific, the time of showing withdrawal response from painful stimulation which is not used measuring method in our animal model was also decreased by DBS. Conclusion : The VPL is an effective target on pain modulation. Specifically we could demonstrate changes of pain response duration which is not used, and it was also significantly meaningful. We thought that this study would be helpful in understanding the relation between VPL-DBS and neuropathic pain.

The Effects of Gonjadaesungchimjoongbang on Learning Ability and Memory after Ischemic Brain Injury in Rats (허혈성 뇌손상 백서에서 공자대성침중방(孔子大聖枕中方)이 학습과 기억에 미치는 영향)

  • Ryu, Su-Hyang;Chae, Jung-Won
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.40-48
    • /
    • 2011
  • Objectives: The purpose of this study is to evaluate the effect of Gonjadaesungchimjoongbang on spatial learning abilities and memories in ischemic brain injury. Methods: Rats were separated into three groups; (1) Normal, (2) Saline medication after ischemic brain injuries (control), (3) Gonjadaesungchimjoongbang medication after ischemic brain injuries (experiment). Ischemic brain injuries was induced by MCA occlusion and reperfusion. Morris water maze test was conducted for spatial learning and memory tests. Then, the change of BDNF in the hippocampus($7^{th}$, $14^{th}$ day) was examined by immunohistoche- mistry. Results: In Morris water maze test, spatial learning abilities and memory functioning were considerably increased in the experiment group as oppose to control group on $7^{th}$ and $14^{th}$ day(p<0.01). Moreover, immunohistochemistric response of BDNF in the hippocampus indicated that the more increased immune reaction was found in the experiment group as oppose to the control group on $7^{th}$ and $14^{th}$ day. Conclusions: Gonjadaesungchimjoongbang can improve the learning abilities and memories in ischemic brain injury.

Effect of Holotrichia in Brain of Lead Acetate-treated Rats (제조가 초산납으로 유발한 흰쥐의 뇌독성에 미치는 영향)

  • Yoon, Jong-Young;Min, Gun-Woo;Shin, Jeong-In;Yoon, Cheol-Ho;Seo, Un-Kyo;Jeong, Ji-Cheon;Shin, Uk-Seob;Park, Jong-Hyuck
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.321-330
    • /
    • 2001
  • Objectives: This study was undertaken to investigate the action mechanism of Holotrichia (HT) at parameter related to dementia. Methods: HT was tested for the effects on acetylchonine esterase and monoamine oxidase activities, lipid peroxidation, antioxidation in brain of lead acetate-treated rats. Lead acetate were treated firstly into samples for 10 days, and then lead acetate and HT were set with them for 20 days. Results: The level of lipid peroxide, acetylcholine esterase and monoamine oxidase activities, enzyme activities and ratio of type conversion of xanthine oxidase increased in lead acetate-treated rats were decreased as highly as normal group by HT. Superoxide dismutase, catalase and glutathione peroxidase activities, the level of acetylcholine decreased in lead acetate-treated rats were increased as lowly as normal group by HT. Conclusions : These results suggest that HT might have an effect on treatment of dementia according to decreasing the activities of acetylcholine esterase, monoamine oxidase and level of lipid peroxide in brain.

  • PDF

Effects of Jaeumgenby-tang adding Aurantii FructusㆍGastrodae Rhizoma on the Brain Cell and Changes of Cerebral Hemodynamics (자음건비탕가지각ㆍ천마가 뇌세포 및 뇌혈류역학 변동에 미치는 영향)

  • Im Gwang Mo;Jeong Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.64-70
    • /
    • 2003
  • Jaeumgenby-tang(JGT) have been used in oriental medicine for many centuries as a therapeutic agent of vertigo caused by deficiency of qi(氣) and blood(血). Effect of Aurantii Fructus(AF) take off the phlegm by promoting the circulation of qi, Gastrodae Rhizoma(GR) has effects treating for headache, vertigo by calming the liver and suppressing hyperactivity of the liver-yang(陽). And, I designed to investigate whether injection of JGT adding AFㆍGR extract(JGTAG) affects cytotoxicity in vitro, cerebral hemodynamics [regional cerebral blood flow(rCBF), pial arterial diameter(PAD), mean arterial blood pressure(MABP)] in normal and cerebral ischemia rats by MCA occlusion method. The changes of rCBF and MABP were determinated by laser-doppler flowmetry(LDF), and the change of PAD was determinated by video microscope and width analyzer. The results were as follows in normal rats; JGTAG was not cytotoxicity in brain cells. And JGTAG was significantly increased rCBF, PAD and MABP. This results suggest that JGTAG increased significantly rCBF by dilating PAD. And the results were as follows in cerebral ischemic rats; The changes of rCBF and PAD were increased stably by treatment with JGTAG(10mg/kg, i.v.) during the period of cerebral reperfusion, and pretreatment with propranolol and indomethacin were increased JGT AG induced increase of rCBF and PAD during the period of cerebral reperfusion. We suggest that JGTAG has an anti-ischemic effect through the improvement of cerebral hemodynamics.

Change of Somatosensory Evoked Field Potential according to the Severity of Hydrocephalus in Kaolin-induced Hydrocephalus of Rats (수두증 흰쥐 모델에서 수두증 정도에 따른 체성 감각 유발 장전위의 변화)

  • Kim, Dong-Seok;Lee, Kwang-Soo;Park, Yong-Goo;Kim, Se-Hyuk;Choi, Joong-Uhn;Lee, Bae-Hwan;Ryou, Jae-Wook;Zhao, Chun-Zhi
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.1
    • /
    • pp.5-14
    • /
    • 2000
  • Objective : Somatosensory evoked potential(SSEP) has been known to be a good method for evaluating brain stem function, but it is not sufficient to check the fine changes of cortical functions. A fine change of cortical function can be expressed with somatosensory evoked cortical field potential(SSEFP) rather than general SSEP. To confirm the usefulness of SSEFP for evaluating the cortical function, the authors simultaneously measured SSEFP and the intracranial pressure-volume index(PVI) in kaolin-induced hydrocephalic rats. Method : Hydrocephalus was induced with injection of 0.1ml kaolin-suspended solution into the cisterna magna in 60 Sprague-Dawley rats. The authors measured PVI and SSEFP 1 week after injection of kaolin-suspended solution. To evaluate the severity of induced hydrocephalus, we measured the transverse diameter of the lateral ventricle on the coronal slice of the rat brain 0.40mm posterior to the bregma. Result : The typical wave form of SSEFP in control rats showed a negative-positive complex wave at early latency. In SSEFP of normal rats, N0 is 10.0 msec, N1 15.3 msec, P1 31.2 msec and N1-P1 amplitude $15.4{\mu}V$. As hydrocephalus progressed, the peak latency of N1 and P1 were delayed. In mild hydrocephalus, negative peak waves were split. The N1-P1 amplitude was decreased only in severe hydrocephalus. The changes of the characteristics of SSEFP according to the severity of hydrocephalus were well correlated with the changes of PVI. Shunting normalized the characteristics of SSEFP in relation to ventricular sizes and PVI in hydrocephalic rats. Conclusion : SSEFP may be useful for evaluating the impairment of cortical function in hydrocephalus.

  • PDF