• Title/Summary/Keyword: Normal brain of rats

Search Result 193, Processing Time 0.022 seconds

Distribution of the Muscarinic Cholinergic Receptors and Characterization in the Brain of Wistar Rats and Spontaneously Hypertensive Rats (SHR Strain) by Digital Autoradiography (Digital Autoradiographic System을 이용한 선천성고혈압에서의 Muscarinic Cholinergic Receptor 분포 및 특성)

  • Sohn, In;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.1
    • /
    • pp.28-34
    • /
    • 1993
  • Using in vitro autoradiography with a digital autoradiography system and radioreceptor assay, the distribution and the binding characteristics of the muscarinic cholinergic receptors (mAChR) were studied in regions of rat brain. Radioreceptor assay revealed that mAChR could be measured with saturation binding assay in the brain and heart homogenates: No difference in Kd or Bmax of the brain or heart was found between the normal Wistar rats and SHR rats. Specific binding of $^3H$ quinuclidinyl benzilate (QNB) increased and saturation was reached by 2 hours after incubation with slide-mounted brain tissue. The distribution of mAChR was heterogeneous along the fields of brain. Affinity (Kd) of mAChR was not different significantly among cortex, hippocampus and caudate-putamen. No difference was found between normal rats and SHR strain. More receptors (Bmax) were found in the cortex and hippocampus than in the caudate-putamen in normal rats. More receptors were found in the cortex and caudate-putamen in SHR rats than in normal rats. Radioreceptor assay and digital autoradiographic analysis of affinity and number of mAChR gave the same results. With the above findings, we concluded that we could use digital autoradiographic system with $^3H$-QNB in the characterization of mAChR of rats and that the cortex and caudate-putamen of SHR strain rats have more receptors than those of normal rats.

  • PDF

The Antioxidant Effects of ONDAMTANG on the Brain Tissue of Mouse (온담탕(溫膽湯)이 뇌조직(腦組織)의 산화작용(酸化作用)에 미치는 영향(影響))

  • Jung In-Chul;Lee Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.8 no.2
    • /
    • pp.51-62
    • /
    • 1997
  • This experiment was done to investigate the antioxidant effect of Ondamtang(ODT) on brain tissues of rats. The experimental groups were divided into three groups and treated as follows for a fifteen days ; Negative control group(NC), Vitamin E admistrated group(PC), ODT administrated Group(ODT). After the extracting microsome from brain of rats, those were measured the amounts of Malondiadehyde and Hydrogen peroxide, then activities of antioxidant enzymes like Superoxide dismutase, Catalase and NADPH-cytochrome P-450 reductadse. The results were as follows; 1. In TBA reaction to measure the amount of MDA, oxidant material of brain tissue of rats, the group treated by ODT showed significant decrease. 2. In the formation of Hydrogen peroxide, the group treated by ODT showed no change in comparison with normal group. 3. The activity of SOD in the group treated by ODT showed a little increase in comparison with normal group. 4. The activity of Catalase was increased significantly in the group treated by ODT than normal group. 5. The activity of NADPH-cytochrome P-450 reductase in the group treated by ODT showed a little increase in comparison with normal group. According to the above results, it is suggested that Ondamtang(ODT) has some antioxidant effects on tissues of brain.

  • PDF

SELECTIVE TOXICITY OF CHRONIC LEAD INGESTION TO CENTRAL CATECHOLAMINERGIC NERVOUS SYSTEM IN RATS

  • Ryu, Jong-Hoon;Cheong, Jae-Hoon;Chin, Kang;Ko, Kwang-Ho
    • Toxicological Research
    • /
    • v.6 no.2
    • /
    • pp.131-142
    • /
    • 1990
  • The selective toxicity of lead was tested in central catecholaminergic nervous system of postnatally lead exposed rats. Three groups of animals were prepared; 1) rats exposed to low dose of lead (0.05%PbAc); 2) rats exposed to high dose of lead(0.2%PbAc); 3) age-matched normal control rats. At2, 4, 6 and 8 weeks of age brain and body weight gain, and lead concentrations in brain tissues were measured. At the same ages tyrosine hydroxylase and Na-K ATPase activities were measured in the 4 brain areas of each animal. Body weight gain was decreased after 6 weeks of age in rats exposed to high dose of lead. Concentrations of lead in whole brain tissues were increased from 0.37 to 0.83 (ng/mg wet tissue) in these animals. in lead exposed rats, tyrosine hydroxylase activities were higher but Na-K ATPase activities were lower than those of age-matched control animals. Brain areas where tyrosine hydroxylase activities were detected without concomitant changes of Na-K ATPase activities were pons-medulla (2 weeks of age) and telencephalon (6 weeks of age) in rats exposed to low dose of lead, and those in rats exposed to high dose of lead were midbrain (4 and 6 weeks of age). These data indicate that catecholaminergic nervous system in the brain areas described above could selectively be affected by lead.

  • PDF

Human Embryonic Stem Cell Transplantation in Parkinson′s Disease (PD) Animal Model: II. In Vivo Transplantation in Normal or PD Rat Brain

  • Choe Gyeong-Hui;Ju Wan-Seok;Kim Yong-Sik;Kim Eun-Yeong;Park Se-Pil;Im Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.19-19
    • /
    • 2002
  • This study was to examine whether the in vitro differentiated neural cells derived from human embryonic stem (hES, MB03) cells can be survived and expressed tyrosin hydroxylase(TH) in grafted normal or PD rat brain. To differentiate in vitro into neural cells, embryoid bodies (EB: for 5 days, without mitogen) were formed from hES cells, neural progenitor cells(neurosphere, for 7-10 days, 20 ng/㎖ of bFGF added N2 medium) were produced from EB, and then finally neurospheres were differentiated into mature neuron cells in N2 medium(without bFGF) for 2 weeks. In normal rat brain, neural progenitor cells or mature neuron cells (1×10/sup 7/ cells/㎖) were grafted to the striatum of normal rats. After 2 weeks, when the survival of grafted hES cells was examined by immunohistochemical analysis, the neural progenitor cell group indicated higher BrdU, NeuN+, MAP2+ and GFAP+ than mature neuron cell group in grafted sites of normal rats. This result demonstrated that the in vivo differentiation of grafted hES cells be increased simultaneously in both of neuronal and glial cell type. Also, neural progenitor cell grafted normal rats expressed more TH pattern than mature neuron cells. Based on this data, as a preliminary test, when the neural progenitor cells were grafted into the striatum of 6-hydroxydopamine lesioned PD rats, we confirmed the cell survival (by double staining of Nissl and NeuN) and TH expression. This result suggested that in vitro differentiated neural progenitor cells derived from hES cells are more usable than mature neuron cells for the neural cell grafting in animal model and those grafted cells were survived and expressed TH in normal or PD rat brain.

  • PDF

Chronic Opium Treatment Can Differentially Induce Brain and Liver Cells Apoptosis in Diabetic and Non-diabetic Male and Female Rats

  • Asiabanha, Majid;Asadikaram, Gholamreza;Rahnema, Amir;Mahmoodi, Mehdi;Hasanshahi, Gholamhosein;Hashemi, Mohammad;Khaksari, Mohammad
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.327-332
    • /
    • 2011
  • It has been shown that some opium derivatives promote cell death via apoptosis. This study was designed to examine the influence of opium addiction on brain and liver cells apoptosis in male and female diabetic and non-diabetic Wistar rats. This experimental study was performed on normal, opium-addicted, diabetic and diabetic opium-addicted male and female rats. Apoptosis was evaluated by TUNEL and DNA fragmentation assays. Results of this study showed that apoptosis in opium-addicted and diabetic opium-addicted brain and liver cells were significantly higher than the both normal and diabetic rats. In addition, we found that apoptosis in brain cells of opium-addicted and diabetic opium-addicted male rats were significantly higher than opium-addicted and diabetic opium-addicted female, whereas apoptosis in liver cells of opium-addicted and diabetic opium-addicted female rats were significantly higher than opium-addicted and diabetic opium-addicted male. Overall, these results indicate that opium probably plays an important role in brain and liver cells apoptosis, therefore, leading neurotoxicity and hepatotoxicity. These findings also in away possibly means that male brain cells are more susceptible than female and interestingly liver of females are more sensitive than males in induction of apoptosis by opium.

Effects of carnosine and hypothermia combination therapy on hypoxic-ischemic brain injury in neonatal rats

  • Byun, Jun Chul;Lee, Seong Ryong;Kim, Chun Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.8
    • /
    • pp.422-429
    • /
    • 2021
  • Background: Carnosine has antioxidative and neuroprotective properties against hypoxic-ischemic (HI) brain injury. Hypothermia is used as a therapeutic tool for HI encephalopathy in newborn infants with perinatal asphyxia. However, the combined effects of these therapies are unknown. Purpose: Here we investigated the effects of combined carnosine and hypothermia therapy on HI brain injury in neonatal rats. Methods: Postnatal day 7 (P7) rats were subjected to HI brain injury and randomly assigned to 4 groups: vehicle; carnosine alone; vehicle and hypothermia; and carnosine and hypothermia. Carnosine (250 mg/kg) was intraperitoneally administered at 3 points: immediately following HI injury, 24 hours later, and 48 hours later. Hypothermia was performed by placing the rats in a chamber maintained at 27℃ for 3 hours to induce whole-body cooling. Sham-treated rats were also included as a normal control. The rats were euthanized for experiments at P10, P14, and P35. Histological and morphological analyses, in situ zymography, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, and immunofluorescence studies were conducted to investigate the neuroprotective effects of the various interventional treatments. Results: Vehicle-treated P10 rats with HI injury showed an increased infarct volume compared to sham-treated rats during the triphenyltetrazolium chloride staining study. Hematoxylin and eosin staining revealed that vehicle-treated P35 rats with HI injury had decreased brain volume in the affected hemisphere. Compared to the vehicle group, carnosine and hypothermia alone did not result in any protective effects against HI brain injury. However, a combination of carnosine and hypothermia effectively reduced the extent of brain damage. The results of in situ zymography, TUNEL assays, and immunofluorescence studies showed that neuroprotective effects were achieved with combination therapy only. Conclusion: Carnosine and hypothermia may have synergistic neuroprotective effects against brain damage following HI injury.

The effects of acupuncture on NADPH-diaphorase and nNOS in the brain stem and cerebellum of SHR (침자극이 흰쥐 뇌줄기 및 소뇌의 NADPH-diaphorase와 nNOS 신경세포에 미치는 영향)

  • Kim, Jong-deog;Kang, Sung-keel;Kim, Chang-whan
    • Journal of Acupuncture Research
    • /
    • v.21 no.5
    • /
    • pp.1-12
    • /
    • 2004
  • Objective : This study was to investigate the effect of acupuncture on NADPH-diaphorase and nNOS in the brain stem and cerebellum of spontaneously hypertensive rats. Methods : The experimental groups were divided into four groups : Normal, Choksamni(ST36), Kokchi(LI11), arbitrary group. Thereafter we evaluated changes in NADPH-diaphorase positive neurons histochemically and changes in nNOS neurons immunohistochemically. Results : 1. The optical densities of NADPH-diaphorase positive neurons of all the Choksamni & Kokchi groups were significantly different in SuG, DLPAG, IP, Pr, Gi areas of brain stem and cerebellum as compared to normal & arbitrary groups. In PPTg only Choksamni group was significantly different as compared to normal and arbitrary groups. 2. The optical densities of nNOS-positive neurons of Choksamni & Kokchi groups were significantly different in SuG, DLPAG areas of brain stem as compared to normal group. In IP, Pr only Kokchi group was significantly different as compared to normal group. The optical densities of nNOS-positive neurons of Choksamni & Kokchi groups were significantly different in SuG, DLPAG, PPTg, Pr, Gi areas of brain stem as compared to arbitrary group. In IP, Pr only Kokchi group was significantly different as compared to arbitrary group. 3. The optical densities of nNOS-positive neurons of all the Choksamni & Kokchi groups were not significantly different in cerebellum as compared to normal & arbitrary groups. Conclusions : We found out that acupuncture have effects on NADPH-diaphorase and nNOS in the brain stem and cerebellum of spontaneously hypertensive rats.

  • PDF

The Role of Dopaminergic Fibers on the Action of Psychotropic Drugs in 6-OHDA-treated Rats (6-OHDA 파괴 후 수종의 향정신약물의 작용에 대한 중추도파민 신경계의 역할)

  • 이순철;유관희
    • Journal of Ginseng Research
    • /
    • v.17 no.3
    • /
    • pp.187-195
    • /
    • 1993
  • We have examined the functional role of central dopaminergic processes on the behavioral pharmacological effects induced by psychotropics and red ginseng saponins of normal rats and compared with that of brain damaged rats. Desipramine and clomipramine produced, a significant depression of the locomotor activity in normal rats, but in brain damaged rats, they did not have any effect throughout the experimental period of 4 hours. Total saponin (50~200 mg/kg), PT (25~50 mg/kg), PD (25~50 mg/kg), $Rg_1$(12.5~25 mg/kg), $Rb_1$ (12.5~50 mg/kg) did not change, and high concentrations of PT (100 mg/kg), PD (100 mg/kg) and $Rg_1$ (50 mg/kg) showed a significant decrease in the locomotor activity of one hour after administration but total saponin (100 mg/kg), PD (25~50 mg/kg), Rgl (12.5 mg/kg), $Rb_1$ (12.5 mg/kg) markedly increased the locomotor activity of four hour after administration in normal rats. On the other hand, total saponin (50 mg/kg), PT (100 mg/kg) and PD (100 mg/kg) Produced a prominent stimulation of the locomotor activity in brain damaged rats. These results suggest that the inhibition of the locomotor activity induced by antidepressants was not affected by the sensitivity of cerebral DA system, whereas red ginseng saponin showed antifatigue effect and also the stimulation of the locomotor activity induced by red ginseng saponin was mediated by the inhibition of cerebral DA system. These psychotropic action of red ginseng saponins could be responsible for the beneficial effects on conditions of fatigue and decreased alertness.

  • PDF

Changes of Gangliosides Metabolism in Streptozotocin-Induced Diabetic Rats and Effect of Deer Antler (Streptozotocin 유발 당뇨병쥐 뇌에서 Gangliosides 대사 변화와 녹용의 효과)

  • 조현진;전길자
    • Biomolecules & Therapeutics
    • /
    • v.2 no.3
    • /
    • pp.223-228
    • /
    • 1994
  • In this study, we examined gangliosides from streptozotocin-induced diabetic rat brain. To obtain the diabetic rat brain, we sacrified the rat three days after injecting the streptozotocin into venus in tail. We measured blood glucose level according to Somogy-Nelson method and measured insulin level using $^{125}$ I-insulin RIA kit. The gangliosides were extracted according to Folch-Suzuki method from the rat brain. We also examined the effect of major lipid components extracted from deer antler on diabetic rat brain. The results showed that the major lipids components lowered both blood glucose and insulin level in normal rat. However only the blood glucose level in diabetic rat was lowered with major lipid components. In diabetic rat brain, gangliosides metabolism were changed. The amount of GMla was increased while GDla, GDlb, and GTlb were not synthesized. Furthermore, undefined ganglioside was found. In major lipid component-treated diabetic rat brain, the ganglioside metabolism proceeded as same as the normal rat. On the contrary, in bovine brain gangliosides-treated diabetic rat brain, the gangliosides metabolism was not recovered to normal one.

  • PDF

Organ-Specific Expression Profile of Jpk: Seeking for a Possible Diagnostic Marker for the Diabetes Mellitus

  • Lee Eun Young;Park Hyoung Woo;Kim Myoung Hee
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.385-389
    • /
    • 2004
  • A novel gene Jpk, originally isolated as a trans-acting factor associating with the position-specific regulatory element of murine Hox gene has been reported to be expressed differentially in the liver of diabetic animals. Therefore, in an attempt to develop a possible diagnostic marker and/or new therapeutic agent for the Diabetes Mellitus, we analysed the expression pattern of Jpk among organs of normal and diabetic Sprague-Dawley (SD) rats. Total RNAs were isolated from each organs (brain, lung, heart, liver, spleen, kidney, muscle, blood, and testis) of diabetic and normal rats in both normal feeding and after fasting condition. And then RT (reverse transcription) PCR has been performed using Jpk­specific primers. The Jpk gene turned out to be expressed in all organs tested, with some different expression profiles among normal and diabetes, though. Upon fasting, Jpk expressions were reduced in all organs tested except kidney, muscle and brain of normal rat. Whereas in diabetes, Jpk expressions were increased in all organs except heart, muscle and testis when fasted. Compared to the normal rat, the Jpk expression level in blood was remarkably upregulated (about 15-30times) in diabetic rat whether in normal feeding or fasting conditon, suggesting that the Jpk could be a candidate gene for the possible blood diagnostic marker for the Diabetes Mellitus.

  • PDF