• 제목/요약/키워드: Normal Rake Angle

검색결과 7건 처리시간 0.03초

유한요소법에 의한 공구인선의 응력분포에 관한 연구

  • 김정두
    • 한국정밀공학회지
    • /
    • 제1권1호
    • /
    • pp.50-58
    • /
    • 1984
  • In the present paper are calculated and compared the stresses on the normal tools and the restricted tools which have three various rake angles by Least Square Method. The results obtained are summerized as follows. The tool displacement at rake angle .alpha. = 12 .deg. and .alpha. = 0 .deg. is positive value in the principal cutting direction and negative value in the feed direction. At rake angle .alpha. = -12 .deg. the displacement is negative value in both of directions. The principal stress of the restricted and normal tool is maximum at the tip of the tool, the shear stress is maximum after a certain distance from the tip. The result of FEM and P.E method shows that in the range of rapid decreasing of normal stress of the tool edge, the shear stress is maintaining a certain value. This is due to the friction characteristic of the chip.

  • PDF

SKD11의 2차원 절삭실험을 통한 절삭 특성 해석 (The Analysis of Machining Characteristics of SKD11 by Orthogonal Cutting Experiments)

  • 김남규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.365-370
    • /
    • 1999
  • SKD11 is one of the most difficult workpiece for machining, so it is necessary to evaluate the machining characteristics of SKD11. The workpiece was made to be the pipe form and heat-treated to HRC45. In this paper, the orthogonal cutting experiment of this material was carried out with TiAlN coated WC cutting tool of 4 kinds of rake angle. After cutting experiment, cutting characteristics of SKD11 were investigated according to variation of cutting speed, feedrate and rake angle.

  • PDF

톱니형Chip의 절삭기구와 Energy에 관한 연구 (A Study on the Cutting Mechanism and Energy with Saw-toothed Chip)

  • 김항영;오석형;서남섭
    • 한국정밀공학회지
    • /
    • 제4권3호
    • /
    • pp.44-51
    • /
    • 1987
  • In metal cutting various types of chips are produced in consequence of cutting conditions. Flow-type chips have been studied in most cases because they are easier to be analyzed, but the actual surfaces of chips are not smooth, but crushed. This paper deals with saw-toothed chips, special types of flow-type chips, which have deep concaves and high convexes and sharp angles on the free surface. I tried to establish the theory of saw-toothed chip mechanism through experimental observation, that is, the mathmatical model of the cutting energy and cutting mechanism through the geometrical observation of the chips by using a microscope. The results obtained are as follows: 1. The mechanism of saw-toothed chips is diffenent from that of general flow-chips. 2. In the case of saw-toothed chips, the shear angle must be measured by the hypotenuse angle and the rake angle, and the shear angle is more affected by the rake angle than by the hypotenbuse angle. 3. The friction angle is represented by .beta. = . pi. /4+ .alpha./ sub n/- .phi. which is different from Merchant's equation. 4. The pitch and the slip are greatly influenced by depth of cut, but the influence of the rake angle on it is small. 5. The normal stress and the shear stress on the shear plane decrease with the increase of the cutting depth, and they are almost independent on the variation of a rake angle. 6. The unit friction energy on the tool face, the unit shear energy on the shear plane, and the total cutting energy per unit volume decrease with the increase of rake angle and cutting depth.

  • PDF

에너지 방법을 이용한 삼차원 절삭력의 이론적 여측에 관한 연구 (A study on the Theoretical of Three Dimensional Cutting Force Used Energy Method)

  • 김장형
    • 한국정밀공학회지
    • /
    • 제1권3호
    • /
    • pp.95-105
    • /
    • 1984
  • The purpose of this paper is to predict the cutting force, utilizing new model of double cutting edge which has normal rake angle and tool inclination angle. Changing side, back rake angle and side cutting edge angle in the new model. Three dimensional cutting force was obtained by the use of .eta. /c=i proposed by Stabler and energy method for three dimen- sional cutting force. Theoretical results has been calculated with development of optimization algorism which can be put into three dimensional theory, using the method of least square with orthogonal cutting data. IT is proved that three dimensional cutting force is to be predicted accurately only if orthogonal cutting force by equalizing theoretical result and experimental result has been calculated.

  • PDF

Flank 마모에 의한 SUS304의 절삭특성에 관한 연구 (A study on the cutting characteristics of SUS304 by flank wear)

  • 유기현;정진용;서남섭
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.182-188
    • /
    • 1994
  • This expermintal study is intended to investigate he development of flank wear in turning os SUS304 which is used in industrial applications and is acknowledged as a machining difficult material. In cutting process, change of velocity, change of feed, and change of depth of cut were investigated about the effect of flank wear, and slenderness ratio is also investigated. The variations of unit cutting force with the change of rake angle and the change of uncut chip area are observed. The friction angles are calculated for the change friction force and observed. The friction angles are calculated for the change friction force and normal forcd on the different rake angles. From this experimental study, the following results can be said. 1. Under the high cutting speed condition, the flaank wear is affected by the feed and depth of cut, but the influence of feed and depth of cut to the flank wear is reduced when the velocity is low. 2. The smaller slenderness ratio is, the shorter the tool life results in high cutting speed, and the lower cutting speed is, the lower the effect of slenderness ratio to the flank wear is. 3. Using the characteristics of force-RMS, the flank wear of a tool can be detected. There are almost no differences between the RMS characteristics of cutting force and feed force.

  • PDF

자기추진 로타리 공구를 사용한 절삭에서 천이칩 형성에 관한 연구 - 실험에 의한 증명 (A Study on Transient Chip Formation in Cutting with Self-Propelled Rotary Tools-Experimental Verification)

  • 최기흥;최기상;김정수
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.1910-1920
    • /
    • 1993
  • An experimental study to investigate the unconventional chip formation called triangulation of chip in cutting with a SPRT (self-propelled rotary tool) is performed using acoustic emission (AE) signal analysis. In doing that, a quantitative model of the AE RMS signal in triangulation with a SPRT is first developed. The predicted results from this model show good correlation between the AE RMS signal and the general characteristics of triangular chip formation. Then, effects of various process parameters such as cutting conditions (cutting speed, depth of cut, oblique angle and normal rake angle) and the work material properties on the chip formation in cutting with a SPRT are explored. Special attention is paid to the work material properties which are found to have significant effects on triangulation.