• Title/Summary/Keyword: Normal Direction

Search Result 1,129, Processing Time 0.03 seconds

One-dimensional modeling of flat sheet casting or rectangular Fiber spinning process and the effect of normal stresses

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 1999
  • This study presents 1-dimensional simple model for sheet casting or rectangular fiber spinning process. In order to achieve this goal, we introduce the concept of force flux balance at the die exit, which assigns for the extensional flow outside the die the initial condition containing the information of shear flow history inside the die. With the Leonov constitutive equation that predicts non-vanishing second normal stress difference in shear flow, we are able to describe the anisotropic swelling behavior of the extrudate at least qualitatively. In other words, the negative value of the second normal stress difference causes thickness swelling much higher than width of extrudate. This result implies the importance of choosing the rheological model in the analysis of polymer processing operations, since the constitutive equation with the vanishing second normal stress difference is shown to exhibit the characteristic of isotropic swelling, that is, the thickness swell ratio always equal to the ratio in width direction.

  • PDF

Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory

  • Zenkour, A.M.;Aljadani, M.H.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.615-632
    • /
    • 2018
  • Mechanical buckling of a rectangular functionally graded plate is obtained in the current paper using a refined higher-order shear and normal deformation theory. The impact of transverse normal strain is considered. The material properties are microscopically inhomogeneous and vary continuously based on a power law form in spatial direction. Navier's procedure is applied to examine the mechanical buckling behavior of a simply supported FG plate. The mechanical critical buckling subjected to uniaxial and biaxial compression loads are determined. The numerical investigation are compared with the numerical results in the literature. The influences of geometric parameters, power law index and different loading conditions on the critical buckling are studied.

Modeling of Normal Gait Acceleration Signal Using a Time Series Analysis Method (시계열 분석을 이용한 정상인의 보행 가속도 신호의 모델링)

  • Lim Ye-Taek;Lee Kyoung-Joung;Ha Eunho;Kim Han-Sung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.462-467
    • /
    • 2005
  • In this paper, we analyzed normal gait acceleration signal by time series analysis methods. Accelerations were measured during walking using a biaxial accelerometer. Acceleration data were acquired from normal subjects(23 men and one woman) walking on a level corridor of 20m in length with three different walking speeds. Acceleration signals were measured at a sampling frequency of 60Hz from a biaxial accelerometer mounted between L3 and L4 intervertebral area. Each step signal was analyzed using Box-Jenkins method. Most of the differenced normal step signals were modeled to AR(3) and the model didn't show difference for model's orders and coefficients with walking speed. But, tile model showed difference with acceleration signal direction - vertical and lateral. The above results suggested the proposed model could be applied to unit analysis.

Comparison of Magnetocardiogram Parameters Between a Ischemic Heart Disease Group and Control Group (정상군 및 허혈성 심질환 환자군에서의 심자도 파라미터 비교)

  • Park, Jong-Duk;Huh, Young;Jin, Seung-oh;Jeon, Sung-chae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.11
    • /
    • pp.680-688
    • /
    • 2005
  • The electrical current generated by heart creates not only electric potential but also a magnetic field. We have observed electrophysiological phenomena of the heart by measuring components of magnetocardiogram(MCG) using 61 channel superconducting quantum interference device(SQUD) system. We have analyzed the possibility and characteristics of MCG parameters for diagnosis of ischemic heart disease. A technique for automatic analysis of MCG signals in time domain was developed. The methods for detecting the position, the interval, the amplitude ratio, and the direction of single current dipole were examined in the MCG wave. The position and interval parameters were obtained by calculating the gradients of a envelope curve which could be formed by the difference between the maximum and minimum envelope of multi-channel MCG signals. We show some differences of the frequency contour map between the normal MCG and the abnormal (ischemic heart disease) MCG. The direction of single current dipole can be defined by rotating the magnetic field according to Biot-Savart's law at each point of MCG signals. In this study, we have examined the direction of single current dipole from searching for the centroids of positive and negative magnetic fields. The amplitude ratio parameters for measuring 57 deviation consisted of A$_{T}$/A$_{R}$ and other ratios. and We developed a new analysis method, which is based on the frequency contour map of electromagnetic field. Using theses parameters, we founded significant differences between normal subjects and ischemic patients in some parameters.

Normal Glenoid Size of the Korean in 7th and 8th Decades (한국인 60~70대의 정상 견갑골 관절와의 크기)

  • Moon, Young-Lae;Ha, Sang-Ho;Noh, Kyung-Hwan
    • Clinics in Shoulder and Elbow
    • /
    • v.11 no.1
    • /
    • pp.37-40
    • /
    • 2008
  • Purpose: We wanted to evaluate the normal glenoid size of Koreans in their 7th and 8th decades by conducting Computed tomographic (CT) studies. Materials and Methods: The CT images were obtained from the normal scapulae of the patients (mean age: 68.8) who had humeral fracture. A display workstation version 2.0.73.315 was used to measure the scans to determine the maximal superoinferior (SI) and anteroposterior (AP) diameters of the glenoid vault. Results: The average diameters of curvature of the glenoid were 31.2 mm (range: 27 to 34 mm) in the superior-inferior direction and 26.1mm (range: 22 to 31mm) in the anterior-posterior direction. Conclusion: This study showed the normal glenoid size of Koreans and it is different from the size that the international literature reported. It should be an important factor for the treatment of fracture or in designing arthroplasty implants.

Robust 3D Facial Landmark Detection Using Angular Partitioned Spin Images (각 분할 스핀 영상을 사용한 3차원 얼굴 특징점 검출 방법)

  • Kim, Dong-Hyun;Choi, Kang-Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.199-207
    • /
    • 2013
  • Spin images representing efficiently surface features of 3D mesh models have been used to detect facial landmark points. However, at a certain point, different normal direction can lead to quite different spin images. Moreover, since 3D points are projected to the 2D (${\alpha}-{\beta}$) space during spin image generation, surface features cannot be described clearly. In this paper, we present a method to detect 3D facial landmark using improved spin images by partitioning the search area with respect to angle. By generating sub-spin images for angular partitioned 3D spaces, more unique features describing corresponding surfaces can be obtained, and improve the performance of landmark detection. In order to generate spin images robust to inaccurate surface normal direction, we utilize on averaging surface normal with its neighboring normal vectors. The experimental results show that the proposed method increases the accuracy in landmark detection by about 34% over a conventional method.

Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.301-321
    • /
    • 2016
  • The objective of this paper is to investigate buckling behavior of composite laminated cylinders by using semi-analytical finite strip method. The shell is subjected to deformation-dependent loads which remain normal to the shell middle surface throughout the deformation process. The load stiffness matrix, which is responsible for variation of load direction, is also throughout the deformation process. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on the first-order shear deformation theory with Sanders-type of kinematic nonlinearity. Displacements and rotations of the shell middle surface are approximated by combining polynomial functions in the meridional direction and truncated Fourier series along with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix, which is responsible for variation of load direction, is also derived for each strip and after assembling, global load stiffness matrix of the shell is formed. The numerical illustrations concern the pressure stiffness effect on buckling pressure under various conditions. The results indicate that considering pressure stiffness causes buckling pressure reduction which in turn depends on various parameters such as geometry and lay-ups of the shell.

A Study on the application for Z-Quality steel (Z-Quality 강재 적용에 대한 고찰)

  • Park, Sungjun;Ha, Yunsok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.8-13
    • /
    • 2017
  • The rolled carbon steel plate has anisotropic property in Z-direction(thickness direction). This is induced by cooling rate difference of Z-direction and sulfur which make non-metallic inclusion(MnS) at center line of thickness direction. Z-directional mechanical properties of normal steel plate are not generally specified and it is defined for Z-Quality steel only through tensile test in Z-direction. If Z-quality steel is not applied for cruciform joint, the lamella tearing will be occurred by tensile stress after welding & during operation of the structure. In this research, one equation estimating Z-directional(orthogonal to plate) stress was developed to prevent lamella tearing by welding. This equation deals with plate thickness & joint configuration(eccentricity, angle and curvature). Analyses were done by strain boundary method using sectional FE modeling and FE 3D models are also used for some cases. Designers can predict the possibility of lamella tearing by adequately applying the result and can appropriately minimize the application of Z-quality steel by revising welding design to some extent.

  • PDF

Effects of Ca Implantation on the Sintering and Crack Healing Behavior of High Purity $Al_2$O$_3$ Using Micro-Lithographic Technique-III: Stability of Crack-Like Pore (Ion Implantation으로 Ca를 첨가된 단결정 $Al_2$O$_3$의 Crack-Like Pore의 Healing 거동-III: Stability of Crack-Like Pore)

  • 김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.887-892
    • /
    • 1999
  • The inner crack-like pore with controlled amount of Ca impurity in the high purity alumina single crystal sapphire had been created by micro-fabrication technique which includes ion implanation photo-lithography Ar ion milling and hot press technique. The crack-like pores in two-hour hot pressed specimen were extremely stable even after heat treating at 1,80$0^{\circ}C$ for 5 hours almost no healing was observed. But the crack-like pores in one-hour hot pressed specimen at 1,30$0^{\circ}C$ were healed by heat treatment and the amount of healing was increased with the heat treatment time and temperature and the amount of Ca addition. The edges of crack-like pore parallel to <1100> direction in (001) basal plane were stable but the edges normal to this direction in (00101) plane <1120> direction were unstable to facetting This means that the surface energy of alumina along the <1100> direction in (0001) basal plane in much lower than <1120> direction.

  • PDF

Spanwise growth of coherent structures in turbulent pipe flow (난류 파이프 유동 내 응집 구조의 횡 방향 성장)

  • Ahn, Junsun;Lee, Jinyoung;Hwang, Jinyul
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.26-31
    • /
    • 2021
  • The spanwise growth of turbulence structures in turbulent pipe flow was investigated using the direct numerical simulation data of Re𝜏 = 544, 934 and 3008. Two-point correlations and pre-multiplied energy spectra of streamwise velocity fluctuations were examined along the spanwise direction. The arclength direction is defined as r𝛳, which is useful for an analogy with the spanwise direction for channels or boundary layers; here, r and 𝛳 are the radial distance from the core and the azimuthal angles, respectively. Both analyses showed that the arclength scales increased with increasing the wall-normal distance. It showed that the coherent structures were confined in the core region due to the crowding effect of a circular pipe geometry. The pipe flow simulation could describe a realistic geometrical flow along the azimuthal direction, unlike the simulations of turbulent channel or boundary layer flow using periodic boundary conditions along the spanwise direction. The present results provided the spanwise organization of energy-containing motions over a broad range of scales in turbulent pipe flow.