• 제목/요약/키워드: Norepinephrine(NE)

검색결과 122건 처리시간 0.027초

교감신경절제 받은 신경병증성 통증 쥐 모델에서 Norepinephrine에 의해 유도된 기계적 이질통의 Rekindling의 기전 (Norepinephrine-Induced Rekindling of Mechanical Allodynia in Sympathectomized Neuropathic Rat)

  • 문동언
    • The Korean Journal of Pain
    • /
    • 제9권2호
    • /
    • pp.318-325
    • /
    • 1996
  • Background: Sympathectomy relieves pain in sympathectically maintained pain, and subcutaneous injection of norepinephrine(NE) can rekindle mechanical allodynia. However, the mechanism of rekindling is not clear. The purpose of this study is to investigate which subtype of $\alpha$-adrenoceptor is involved in NE-induced rekindling of mechanical allodynia in sympathectomized neuropathic rats. Methods: Neuropathic injury was produced by tightly ligating the left L5 and L6 spinal nerves of 36 male Sprague-Dawley rats and bilateral lumbar sympathectomy was done at two weeks postoperatively. Starting at 7 days after sympathectomy, rekindling of mechanical allodynia was induced by NE and clonidine injected into the left paw, which was reversed by pretreatment of phentolamine and idazoxan. Mechanical allocynia was quantified by measuring the frequency of foot lifts to two von Frey filaments applied to the paw. Results: All tested rats displayed well-developed signs of mechanical allodynia at the left paw that were abolished by a bilateral lumbar sympathectomy. Subcutaneous (s.c.) injection of NE (0.05 ${\mu}g$) into the affected paw of sympathectomized neuropathic rats rekindled previous mechanical allodynia. These effects could be mimicked by an ${\alpha}_2$-receptor agonist clonidine, but not by an ${\alpha}_1$-receptor agonist phenylephrine. The NE-induced rekindling of mechanical allodynia was significantly reduced by prior s.c. injection of a mixed $\alpha$-receptor antagonist phentolamine (20${\mu}g$) and ${\alpha}_2$-receptor antagonist idazoxan(20${\mu}g$), but not by a ${\alpha}_1$-receptor antagonist terazosin (20${\mu}g$). The pretreatment of idazoxan produced dose-related inhibition of NE-induced rekindling of mechanical allodynia. The rekindling induced by ${\alpha}_2$-receptor agonist clonidine (5${\mu}g$) was also reversed by prior s.c. injection of ${\alpha}_2$-receptor antagonist idazoxan (20${\mu}g$). Conclusion: Subcutaneous injection of NE into the paw of sympathectomized neuropathic rats rekindles mechanical allodynia, which is reversed by an ${\alpha}_2$-, but not by an ${\alpha}_1$-receptor antagonist. Therefore, rekindling of mechanical allodynia in sympathectomized neuropathic rats is mediated by ${\alpha}_2$-adrenoceptor.

  • PDF

Influence of Bromocriptine on Release of Norepinephrine and Epinephrine Evoked by Cholinergic Stimulation from the Rat Adrenal Medulla

  • Lee, Seung-Il;Kang, Moo-Jin;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • 제9권3호
    • /
    • pp.201-208
    • /
    • 2001
  • The present study was conducted to examine the effects of cholinergic stimulation and membrane depolarization on secretion of epinephrine (EP) and norepinephrine (NE) in the perfused model of the rat adrenal gland and to investigate the effect of bromocriptine on secretion of EP and NE evoked by these secreta-gogues. Acetylcholine (ACh, 5.32 mM), high $K^{+}$(56mM), 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP, 100 $\mu$M for 2 min), (3-(m-cholro-phenyl-carbamoyl-oxy)-2butynyl trimethyl ammonium chloride (McN-A-343, 100 $\mu$M for 2 min), cyclopiazonic acid (10 $\mu$M for 4 min) and methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) -pyridine-5-carboxylate (Bay-K-8644, 10 $\mu$M for 4 min) evoked a 1.3~5.3-fold greater secretion of EP than NE in the perfused rat adrenal gland. The perfusion of bromocriptine (1-10 $\mu$M) into an adrenal vein for 20 min produced relatively dose-dependent inhibition in secretion of EP and NE evoked by ACh, high $K^{+}$, DMPP, and McN-A-343. Moreover, under the presence of bromocriptine (1~10 $\mu$M), releasing responses of EP and NE evoked by cyclopiazonic acid and Bay-K-8644 were also greatly reduced. Taken together, these results suggest that cholinergic stimulation and membrane depolarization enhance more release of EP than NE in the perfumed rat adrenal medulla, and that bromocriptine inhibits the release of EP and NE evoked by stimulation of cholinergic receptors as well as by membrane depolarization. It seems that this inhibitory effect of bromocriptine is associated with inhibition of calcium channels through activation of dopaminergic D2-receptors located in the rat adrenomedullary chromaffin cells.lls.

  • PDF

흰쥐 해마에서 Norepinephrine 유리를 조절하는 $A_1-adenosine$ 수용체의 역할에 미치는 $K^+$ 통로 차단제의 영향 (Effect of $K^+-channel$ Blockers on the $A_1-adenosine$ Receptor-Coupled Regulation of Electrically-Evoked Norepinephrine Release in the Rat Hippocampus)

  • 최봉규;김상훈
    • 대한약리학회지
    • /
    • 제32권3호
    • /
    • pp.301-309
    • /
    • 1996
  • 흰쥐 해마(hippocampus)에서 norepinephrine(NE) 유리에 미치는 $A_{1}-adenosine$ 수용체의 post-receptor 기전에 $K^+$-통로가 관여하는지에 대한 지견을 얻고자 하여 $^3H-NE$로 평형시킨 해마 절편을 사용하여 adenosine의 $^3H-NE$ 유리에 미치는 $K^+$-통로 차단제의 영향을 관찰하였다. Adenosine$(1{\sim}30{\mu}M)$은 전기자극(3 Hz, 2 ms, 5 $VCm^{-1}$, 구형파)에 의한 NE 유리를 용량 의존적으로 감소시켰다. $K^+$-통로 차단제의 하나인 4-aminopyridine(4AP, $1{\sim}30{\mu}M$)은 자극에 의한 NE 유리를 용량 의존적으로 증가시켰으며 특히 10 및 $30{\mu}M$의 투여에 의해 기저 유리 또한 증가시켰다. 또 다른 $K^+$-통로 차단제인 tetraethylammonium(TEA, $1{\sim}10mM$) 역시 자극에 의한 NE 유리를 용량 의존적으로 증가시켰으나 이때 기저 유리에는 변화를 보이지 않았다. $K^+$-통로 차단제의 adenosine 효과에 미치는 실험에서는 adenosine에 의한 NE 유리 감소효과가 4AP $3{\mu}M$ 동시 투여에 의해 억제되었으며, 또한 1 mM TEA에 의하여는 영향을 받지않았으나 3 mM TEA 동시 투여에 의하여는 억제됨을 볼 수 있었다. 한편 $30\;{\mu}M$ 4AP 에 의한 NE 유리 증가효과는 $Ca^{++}$ 제거 영양액에서는 완전히 소실되었고 영양액 내의 $Ca^{++}$을 정상 농도의 1/4로 하였을때에는 NE 유리 억제가 어느정도 회복됨을 볼 수 있었으며 이때 기저 유리 또한 증가됨을 볼 수 있었다. l/4 $Ca^{++}$ 농도시에 4AP의 NE유리에 미치는 효과는 영양액내의 $Mg^{++}$을 4mM로 올렸을때 크게 억제되었으며 $0.3\;{\mu}M$ tetrodotoxin(TTX) 동시 투여에 의해 완전히 차단됨을 볼 수 있었다. TEA 10mM에 의한 NE 유리 증가효과 역시 $Ca^{++}$ 제거 영양액에서 완전히 소실되었고 이 또한 1/4 $Ca^{++}$ 영양액에 의하여는 회복됨을 볼 수 있었으며 $Mg^{++}$ 증가 영양액에서는 억제, TTX 동시 투여시에는 완전히 소실되었다. 이상의 실험결과로 흰쥐 해마에서 $A_1-adenosine$ 수용체를 통한 adenosine의 NE 유리 감소는 TEA 및 4AP에 예민한 $K^+$-통로가 관여하고 여기에는 세포외액의 Ca^{++}의 농도가 중요한 인자의 하나로 관여 하는 것으로 사료된다.

  • PDF

Lithium-induced Increase of Synaptosomal Uptake of Norepinephrine in Rat Brain

  • Cho, Young-Wuk;Han, Seung-Ho;Kim, Chang-Ju;Min, Byung-Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권2호
    • /
    • pp.127-133
    • /
    • 1997
  • Lithium remains the most widely used therapeutic agent for bipolar affective disorder, particularly mania. Although many investigators have studied the effects of lithium on abnormalities in monoamine neuro-transmitter as a pathophysiological basis of affective disorder, the action mechanism of lithium ion remains still unknown. To explore the action mechanism of lithium in the brain, we examined the effects of lithium on the extrasynaptosomal concentrations of catecholamines and their metabolites. Synaptosomes were prepared from the rat forebrains and assays of catecholamines and metabolites were made using HPLC with an electrochemical detector. Lithium of 1mM decreased the extrasynaptosomal concentrations of NE from the control group of $3.07{\pm}1.19$ to the treated group of $0.00{\pm}0.00$ (ng/ml of synaptosomal suspension) but not that of DHPG. It can be suggested that lithium increases synaptosomal uptake of NE. Increased intraneuronal uptake of NE would decrease neurotransmission and extraneuronal metabolism of NE. Because increased brain NE metabolism and neurotransmission have been suggested as important components in the pathophysiology of bipolar affective disorder, especially mania, lithium-induced increase of intraneuronal NE uptake can be suspected as an action mechanism of therapeutic effect of lithium in manic patient, possibly in bipolar affective disorder.

  • PDF

흰쥐 해마에서 Norepinephrine 유리에 미치는 $N^6-cyclopentyladenosine$ 및 Forskolin의 영향 (Interaction of Forskolin with the Effect of $N^6-cyclopentyladenosine$ on Norepinephrine Release in Rat Hippocampus)

  • 최봉규;김도경;손용;양의종
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권3호
    • /
    • pp.225-231
    • /
    • 1997
  • As it has been reported that the depolarization-induced norepinephrine (NE) release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor and various lines of evidence indicate the involvement of adenylate cyclase system in $A_1-adenosine$ post-receptor mechanism in hippocampus, it was attempted to delineate the role of adenylate cyclase system in the $A_1-receptor-mediated$ control of NE release in this study. Slices from rat hippocampus were equilibrated with $[^3H]-NE$ and the release of the labelled products was evoked by electrical stimulation.(3 Hz, $5Vcm^{-1}$, 2 ms, rectangular pulses). The influence of various agents on the evoked tritium-outflow was investigated. $N^6-Cyclopentyladenosine$ (CPA), a specific $A_1-adenosine$ receptor agonist, in concentrations Tanging from 0.1 to $10{\mu}M$ decreased the $[^3H]-NE$ release in a dose-dependent mauler without any change of basal rate of release. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, $2{\mu}M$), a selective $A_1-receptor$ antagonist, inhibited the CPA effect. The responses to N-ethylmaleimide $(3&10{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked NE-release and the CPA effects were completely abolished by NEM pretreatment. Forskolin, a specific adenylate cyclase activator, in concentrations ranging from 0.1 to $30{\mu}M$ increased the evoked and basal rate of NE release in a dose-dependent manner and the CPA effects were inhibited by forskolin pretreatment. Rolipram $(1&10{\mu}M)$, a phosphodiesterase inhibitor, did not affect the evoked NE release but reduced the CPA effect. And 8-bromo-cAMP $(100&300{\mu}M)$, a membrane permeable cAMP analogue inhibited the CPA effect significantly. These results suggest that the $A_1-adenosine$ heteroreceptor plays an important role in NE-release via nucleotide-binding protein $G_i$ in the rat hippocampus and that the adenylate cyclase system might be participated in this process.

  • PDF

뇌내(腦內) Norepinephrine, Clonldine에 의한 심박(心搏) 및 혈압변동(血壓變動)에 관한 연구(硏究) (Studies on the Changes in Heart Rate and Blood Pressure Induced by Central Norepinephrine and Clonidine)

  • 이정청
    • 대한약리학회지
    • /
    • 제14권1_2호
    • /
    • pp.13-23
    • /
    • 1978
  • 1) Urethane 마취가토(痲醉家兎)의 내뇌(腦內)(측뇌실(刻腦室) 또는 소뇌연수조내(小腦延髓槽內)에 norepinephrine (NE), clonidine을 주입(注入)할 때 일어나는 심박감소(心搏減少), 혈압하강(血壓下降)에 관한 이들 약물(藥物)의 작용점(作用點)을 조사(調査)할 것을 시도(試圖)하였다. 2) NE의 뇌내주입(腦內注入)은 심박감소(心搏減少)를 일으켰으나 혈압(血壓)에 미치는 영향(影響)은 뚜렷치 않았다. Clonidine은 심박감소(心搏減少), 혈압하강(血壓下降)을 일으켰다. 3) 측뇌실내주입(刻腦室內注入) 소뇌연수조내주입간(小腦延髓槽內注入間)에는 NE, clonidine, phenylephrine, isoproterenol의 심박(心搏), 혈압효과(血壓效果)에 차이(差異)가 없었다. 또 NE에 의한 심박감소효과(心搏減少效果)의 출현(出現)은 소뇌연수조내주입시(小腦延髓槽內注入時) 더 빨랐다. 4) 약(約) 2시간(時間) 간격(間隔)으로 NE를 반복(反復) 주입(注入)할 때 심박효과(心搏效果)에는 거의 변동(變動)이 없었으나 혈압효과(血壓效果)는 반복주입(反復注入)함에 따라 혈압상승효과(血壓上昇效果)가 현저(顯著)히 나타났다. Clonidine의 심박감소(心搏減少) 및 혈압하강효과(血壓下降效果)는 반복주입(反復注入)에 따라 점차 약화(弱化)되었다. 5) NE 주입후(注入後) NE 효과(效果)가 지속(持續)하고 있을 때 clonidine은 더 이상(以上)의 심박감소(心搏減少)를 일으키지 않고, 혈압하강(血壓下降)도 일으키지 않았다. Clonidine 주입후(注入後) clonidine 효과(效果)가 지속(持續)하고 있을 때 NE는 더 이상(以上)의 심박감소(心搏減少)를 일으키지 않았고 현저(顯著)한 혈압상승(血壓上昇)을 일으켰다. 6) Regitine 또는 desmethylimipramine의 뇌내주입후(腦內注入後) NE는 심박(心搏)에 거의 변동(變動)을 일으키지 않았으나 현저(顯著)한 혈압상승(血壓上昇)을 일으켰다. Clonidine은 심박(心搏), 혈압(血壓)에 거의 변동(變動)을 일으키지 않았다. 7) Reserpine 처리가토(處理家兎)에서는 NE는 심박증가(心搏增加)와 혈압상승(血壓上昇)을 일으켰으며, clonidine은 심박(心搏)에는 거의 변동(變動)을 일으키지 않았고 경미(輕微)한 혈압상승(血壓上昇)을 일으켰다. 8) NE 및 clonidine에 의한 심박감소(心搏減少), clonidine에 의한 혈압하강(血壓下降)은 주(主)로 presynaptic ${\alpha}$-adrenoceptor를 중개(仲介)하여 일어나나, NE 및 clonidine에 의한 혈압상승(血壓上昇)은 presynaptic site 이외(以外)의 부위(部位)를 중개(仲介)하여 일어나는것 같다.

  • PDF

삼요탕이 폐혈관 및 뇌혈류량에 미치는 영향 (Effects of Samyoo-tang Extract on Pulmonary Artery and Cerebral Blood Flow in Rabbits and Rats)

  • 이원중;고영철;박병민;신조영;이시형
    • 대한한의학회지
    • /
    • 제23권3호
    • /
    • pp.63-73
    • /
    • 2002
  • Objective : This study aimed to investigate the effects Samyoo-tang Extract (SE) on the vascular systems, including changes in blood pressure and regional cerebral blood flow (rCBF), of male Sprague-Dawley rats. Methods : The changes in rCBF were determined by Laser-Doppler flowmetry through the opened cranial method and norepinephrine (NE)-induced blood vessel contractions were determined by physiograph in the pulmonary artery of isolated rabbits. Results and Conclusion : 1. Contractions evoked by NE ($ED_{50}$) were inhibited significantly by SE in the pulmonary artery. 2. SE inhibited the relaxation of NE induced contractions pretreated with propranolol. 3. SE did not inhibit the relaxation of NE induced contractions pretreated with ODQ and L-NNA. 4. Blood pressure was not affected by SE in rats. 5. rCBF was increased by SE in a dose-dependent manner. 6. Pretreatment with propranolol was increased by SE in a dose-dependent manner in blond pressure. 7. Pretreatment with methylene blue, ODQ and L-NNA did not inhibit SE induced increased in rCBF. These results indicate that SE can relax NE-induced contraction of rabbit blood vessels and increased the changes of rCBF in rats, that relate to the sympathetic nerve system.

  • PDF

마두령(馬兜鈴)이 혈관(血管) 평활근(平滑筋)에 미치는 영향(影響) (Effects of Fructus Aristolochiae on the Vascular Smooth Muscle)

  • 김형창;류도곤;한종현;이호섭
    • Korean Journal of Acupuncture
    • /
    • 제17권1호
    • /
    • pp.75-80
    • /
    • 2000
  • Fructus Aristolochiae has been used in Korea for many centuries as a treatment for various disease.The purpose of the present study is to determine the effect of Fructus Aristolochiae on norepinephrine(NE) induced blood vessel contraction in rabbits. Rabbit(2 kg, male) were killed by $CO_2$ exposure and a segment (8-10mm) of each rabbit was cut into equal segments and mounted in a tissue bath. Contractile force was measured with force displacement transducers under 2-3 g loading tension. The dose of norepinephrine(NE) which evoked 50% of maximal response ($ED_{50}$) was obtained from cumulative dose response curves for NE ($10^{-6}{\sim}10^{-3}M$). Contractions evoked by NE ($ED_{50}$) were inhibited significantly by Fructus Aristolochiae in abdominal aorta and femoral artery. Fructus Aristolochiae inhibited the relaxation pretreated propranolol and L-NNA in femoral artery. But Fructus Aristolochiae did not effect the relaxation pretreated ODQ in femoral artery and abdominal aorta. These results indicate that Fructus Aristolochiae can relax NE induced contraction of rabbit blood vessel selectively, and that this relaxation relates to nitric oxide synthesis and sympathetic action.

  • PDF

Phenytoin과 Phenobarbital이 뇌내(腦內) Catecholamine함량(含量)과 혈장(血漿) Corticosterone치(値) 변동(變動)에 미치는 영향(影響) (Influence of Phenytoin and Phenobarbital on the Changes of Brain Norepinephrine Content and Plasma Corticosterone Level in Mice)

  • 김남헌;천연숙
    • 대한약리학회지
    • /
    • 제18권2호
    • /
    • pp.51-58
    • /
    • 1982
  • In this paper, the influence of phenytoin and phenobarbical on the changes of brain norepinephrine(NE) content, plasma corticosterone and blood sugar level in mice were studied. The results obtained were summarized as follows: 1) Phenytoin(50 mg/kg) increased the brain NE content but phenobarbital(50 mg/kg) did not affect. The increase of the brain NE content induced phenytoin was potentiated by phenobarbital pretreatment. 2) Phenytoin(25 mg/kg, 50 mg/kg) markedly increased the level of plasma corticosterone but phenobarbital did not affect. The increase of the plasma corticosterone induced by phenytoin was inhibited by phenobarbital pretreatment. 3) Phenytoin(50 mg/kg) markedly increased the blood sugar level but phenobarbital did not affect. The increase of the blood sugar induced by phenytoin was not affected by phenobarbital pretreatment.

  • PDF

The Influence of $N^6-cyclopentyladenosine$ and Magnesium on Norepinephrine Release in the Rat Hippocampus

  • Park, Yeung-Bong;Park, Sang-Duk;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권2호
    • /
    • pp.135-142
    • /
    • 1997
  • As it has been reported that the depolarization-induced norepinephrine (NE) release is modulated by activation of presynaptic $A_1$-adenosine heteroreceptor and various lines of evidence indicate that $A_2$-adenosine receptor also presents in hippocampus, and that the adenosine effect is magnesium dependent, the present study was undertaken to delineate the role of adenosine receptors in the modulation of hippocampal NE release. Slices from the rat hippocampus were equilibrated with $[^3H]-NE$ and the release of the labelled product, $[^3H]-NE$, was evoked by electrical stimulation (3 Hz, 5 V $cm^{-1}$, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium outflow was investigated. $N^6-cyclo-pentyladenosine$ (CPA), in concentrations ranging from 0.1 to 10 ${\mu}M$, decreased the $[^3H]-NE$ release in a dose-dependent manner without changing the basal rate of release, and these effects were significantly inhibited by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 2 ${\mu}M$) treatment. When the magnesium concentration was reduced to 0.4 mM or completely removed, the evoked NE release increased along with decreased basal rate of release. In contrast, increasing the magnesium concentrations to 2.4 and 4 mM, decreased the evoked NE release. The CPA effects on evoked NE release were reducedby magnesium removal, but potentiated by 2.4 mM magnesium in the medium. 5-(N-cyclopropyl)-carboxamodiadenosine (CPCA, 1 & 10 ${\mu}M$), an $A_2$-agonist, decreased the evoked tritium outflow, and this effect was also abolished by DPCPX pretreatment. CGS, a powerful $A_2$-agonist, did not affect the evoked NE release. However, the effects of CPCA and CGS on evoked NE release were significantly increased by pretreatment of DPCPX in the magnesium-free medium. These results indicate that inhibitory effect of $A_1$-adenosine receptor on NE release is magnesium-dependent, and $A_2$-receptor may be present in the rat hippocampus.

  • PDF