• Title/Summary/Keyword: Nootkatone

Search Result 9, Processing Time 0.019 seconds

Sesquiterpene Derivatives Isolated from Cyperus rotundus L. Inhibit Inflammatory Signaling Mediated by NF-${\kappa}B$

  • Khan, Salman;Choi, Ran-Joo;Lee, Dong-Ung;Kim, Yeong-Shik
    • Natural Product Sciences
    • /
    • v.17 no.3
    • /
    • pp.250-255
    • /
    • 2011
  • The immune system is finely balanced by the activities of pro-inflammatory and anti-inflammatory mediators or cytokines. Unregulated activities of these mediators can lead to the development of various inflammatory diseases. A variety of safe and effective anti-inflammatory agents are available with many more drugs under development. Of the natural compounds, the sesquiterpenes (nootkatone, ${\alpha}$-cyperone, valencene and ${\alpha}$-selinene) isolated from C. rotundus L. have received much attention because of their potential antiinflammatory effects. However, limited studies have been reported regarding the influence of sesquiterpene structure on anti-inflammatory activity. In the present study, the anti-inflammatory potential of four structurally divergent sesquiterpenes was evaluated in lipopolysaccaride (LPS)-stimulated RAW 264.7 cells, murine macrophages. Among the four sesquiterpenes, ${\alpha}$-cyperone and nootkatone, showed stronger anti-inflammatory and a potent NF-${\kappa}B$ inhibitory effect on LPS-stimulated RAW 264.7 cells. Molecular analysis revealed that various inflammatory enzymes (iNOS and COX-2) were reduced significantly and this correlated with downregulation of the NF-${\kappa}B$ signaling pathway. Additionally, electrophoretic mobility shift assays (EMSA) elucidated that nootkatone and ${\alpha}$-cyperone dramatically suppressed LPS-induced NF-${\kappa}B$-DNA binding activity using 32Plabeled NF-${\kappa}B$ probe. Hence, our data suggest that ${\alpha}$-cyperone and nootkatone are potential therapeutic agents for inflammatory diseases.

Development of Content Analysis for Cyperus rotundus by HPLC-UV and a Comparison between Chinese and Domestic Cyperi Rhizoma (HPLC-UV 방법을 이용한 향부자 분석법 개발과 국산 및 중국산 향부자의 패턴비교)

  • Seo, Jiyun;Kim, Jinah;Kim, Sungun;Liu, Ting;Whang, Wan Kyunn
    • YAKHAK HOEJI
    • /
    • v.56 no.5
    • /
    • pp.280-287
    • /
    • 2012
  • A high-performance liquid chromatography (HPLC) combined with ultraviolet (UV) method for the simultaneous determination of ${\alpha}$-cyperone and nootkatone was developed for the quality control of Cyperus rotundus Linne. The separation was performed on a KR100-$5C_{18}$ ($4.6{\times}250mm$) column, and an elution gradient composed of methanol and water with a flow-rate of 1.0 ml/min. Detection wavelength was set at 254 nm. The optimum extraction for the detection of the ${\alpha}$-cyperone and nookatone was achieved by ultrasonic with methanol for an hour. Two marker compounds ${\alpha}$-cyperone and nootkatone in Cyperi Rhizoma showed good linearity ($R^2$ >0.999) in the concentration range of $12.5{\mu}g/ml$ to $200{\mu}g/ml$. The developed method provided satisfactory precision and accuracy with overall intra-day and inter-day variations of 0.04~1.23% and 0.08~0.68%, respectively, and the overall recoveries of 97.45~105.58% for the two compounds analyzed. Additionally, a difference was observed in the cluster analysis and principal component analysis between Cyperi Rhizoma in Korea and China. The result demonstrated that the principal component analysis is useful to distinguish between Cyperi Rhizoma in Korea and China.

The Volatile Composition of Kiyomi Peel Oil (Citrus unshiu Marcov×C. sinensis Osbeck) Cultivated in Korea

  • Song, Hee-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.292-298
    • /
    • 2008
  • The volatile composition of Kiyomi peel oil cultivated in Korea was studied by using gas chromatography and gas chromatography-mass spectrometry. The peel oil from the Kiyomi fruit was prepared by using a cold-pressing extraction method. Among the 65 components quantified in Kiyomi oil, 25 terpene hydrocarbons and 40 oxygenated compounds were identified, with peak weight percentages measuring 94.5% and 4.9%, respectively. Limonene was the predominant compound (87.5%), followed by myrcene (2.4%), sabinene (0.9%), $\alpha$-pinene (0.8%), $\beta$-sinensal (0.8%), (Z)-$\beta$-farnesene (0.7%), neryl acetate (0.6%), valencene (0.5%), $\alpha$-farnesene (0.5%), and $\alpha$-sinensal (0.5%). A unique characteristic of the volatile profile of the Kiyomi oil was the proportion of aldehydes (2.7%), which resulted from the relative abundance of $\alpha$- and $\beta$-sinensal. Another unique characteristic of the Korean Kiyomi oil was its relative abundance of $\beta$-sinensal, (Z)-$\beta$-farnesene, neryl acetate, valencene, $\alpha$-sinensal and nootkatone. Valencene and $\alpha$- and $\beta$-sinensal were regarded as the influential components of Korean Kiyomi peel oil.

Sesquiterpenoids from the heartwood of Juniperu s chinensis

  • Jung, Hee Jin;Min, Byung-Sun;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.208-212
    • /
    • 2017
  • A new sesquiterpenoid, 11-hydroxy-valenc-1(10),3(4)-dien-2-one (3), two chemically synthesized but first isolate from nature, $3-oxocedran-8{\beta}-ol$ (1) and valenc-1(10),3(4),11(12)-trien-2-one (2) along with four known compounds, sugiol (4), (+)-nootkatone (5), 11-hydroxy-valenc-1(10)-en-2-one (6), and clovandiol (7), were isolated from the heartwood of Juniperus chinensis. All chemical structures were elucidated using extensive spectroscopic analysis including 1D and 2D NMR spectroscopy. Valenc-1(10),3(4),11(12)-trien-2-one (2) exhibited significant inhibitory activity against butyrylcholinesterase with an $IC_{50}$ value of $68.45{\mu}M$.

Determination of the volatile flavor components of orange and grapefruit by simultaneous distillation-extraction (연속수증기증류추출법에 의한 오렌지와 자몽의 휘발성 유기화합물 확인)

  • Hong, Young Shin;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.23 no.1
    • /
    • pp.63-73
    • /
    • 2016
  • The volatile flavor components of the fruit pulp and peel of orange (Citrus sinensis) and grapefruit (Citrus paradisi) were extracted by simultaneous distillation-extraction (SDE) using a solvent mixture of n-pentane and diethyl ether (1:1, v/v) and analyzed by gas chromatography-mass spectrometry (GC-MS). The total volatile flavor contents in the pulp and peel of orange were 120.55 and 4,510.81 mg/kg, respectively, while those in the pulp and peel of grapefruit were 195.60 and 4,223.68 mg/kg, respectively. The monoterpene limonene was identified as the major voltile flavor compound in both orange and grapefruit, exhibiting contents of 65.32 and 3,008.10 mg/kg in the pulp and peel of orange, respectively, and 105.00 and 1,870.24 mg/kg in the pulp and peel of grapefruit, respectively. Limonene, sabinene, ${\alpha}$-pinene, ${\beta}$-myrcene, linalool, (Z)-limonene oxide, and (E)-limonene oxide were the main volatile flavor components of both orange and grapefruit. The distinctive component of orange was valencene, while grapefruit contained (E)-caryophyllene and nootkatone. $\delta$-3-Carene, ${\alpha}$-terpinolene, borneol, citronellyl acetate, piperitone, and ${\beta}$-copaene were detected in orange but not in grapefruit. Conversely, grapefruit contained ${\beta}$-pinene, ${\alpha}$-terpinyl acetate, bicyclogermacrene, nootkatol, ${\beta}$-cubebene, and sesquisabinene, while orange did not. Phenylacetaldehyde, camphor, limona ketone and (Z)-caryophyllene were identified in the pulp of both fruits, while ${\alpha}$-thujene, citronellal, citronellol, ${\alpha}$-sinensal, ${\gamma}$-muurolene and germacrene D were detected in the peel of both fresh fruit samples.

Fragrance Pattern and Volatile Components According to Floral Organs in Cymbidium (화기 부위에 따른 심비디움의 향기 패턴 및 성분 분석)

  • Kim, Yae Jin;Ahn, Myung Suk;Lee, Su Young;Park, Pil Man;An, Hye Ryun;Park, Pue Hee
    • Korean Journal of Plant Resources
    • /
    • v.35 no.2
    • /
    • pp.362-371
    • /
    • 2022
  • This study was conducted to analyze the fragrance characteristics of Cymbidium 'Saelbit' and 'Midan' according to floral organs. As test materials, full bloom flowers were divided into four organs: sepal, petal, labellum, and column. Using the gas chromatography (GC) based electronic nose, fragrance patterns, intensity, and volatile components were analyzed. Principle component analysis (PCA) and discriminant factorial analysis (DFA) plots by electronic nose data showed that volatiles of both cultivars have a distinct difference in fragrance patterns according to the floral organs, and the value of fragrance distance and pattern discrimination index (PDI) between samples was significantly high between control and sepals in both cultivars. Among the main fragrance components, several components including nootkatone were detected in both cultivars and all floral organs. However, few components such as decane were found in specific cultivar or floral organs. These results will provide useful information to select suitable materials with desired fragrance and to enhance the utilization of domestic Cymbidium cultivars. In addition, considering the recent negative perception of artificial ingredients and the growing demand for natural materials, continuous researches on scent properties of promising cultivars are required.

Quantitative Analysis of Hyangsayukgunja-Tang Using an Ultra-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry (LC-MS/MS를 이용한 향사육군자탕의 주요성분의 함량분석)

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.4
    • /
    • pp.352-364
    • /
    • 2015
  • The aim of this study was to quantitatively analyze for quality assessment of eighteen marker compounds, including homogentisic acid, 3,4-dihydroxybenzaldehyde, spinosin, liquiritin, hesperidin, ginsenoside Rg1, liquiritigenin, ginsenoside Rb1, glycyrrhizin, 6-gingerol, atractylenolide III, honokiol, costunolide, dehydrocostuslactone, atractylenolide II, nootkatone, magnolol, and atractylenolide I, in Hyangsayukgunja-tang using an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer. The column for separation of eighteen marker components were used a UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}$) and kept at $45^{\circ}C$ by gradient elution with 0.1% (v/v) formic acid in water and acetonitrile as mobile phase. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}l$, respectively. The correlation coefficient of all marker compounds was ${\geq}0.9914$, which means good linearity, within the test ranges. The limits of detection and quantification values of the all analytes were in the ranges 0.04-1.11 and 0.13-3.33 ng/mL, respectively. As a result, five compounds, homogentisic acid, 3,4-dihydroxybenzaldehyde, spinosin, liquiritigenin, and atractylenolide I, in this sample were not detected and the amounts of the 13 compounds except for the 5 compounds were $8.10-6736.37{\mu}g/g$ in Hyangsayukgunja-tang extract.

Quantitative Analysis of the Fifteen Constituents in Hyangso-San by LC-MS/MS (LC-MS/MS를 이용한 향소산 중 15종 성분의 정량분석)

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.4
    • /
    • pp.381-388
    • /
    • 2016
  • Hyangso-san is a traditional herbal medicine that consists of the seven herbal medicines, Cyperi Rhizoma, Perillae Folium, Atractylodis Rhizoma, Citri Unshius Pericarpium, Glycyrrhizae Radix et Rhizoma, Zingiberis Rhizoma Crudus, and Allii Fistulosi Bulbus. Hyangso-san has long been clinically used to treat the influenza, including headache, ferver, chills, and pantalgia. In this study, we were performed the simultaneous analysis of the 15 marker compounds (liquiritin apioside, liquiritin, ferulic acid, naringin, hesperidin, rosmarinic acid, liquiritigenin, kaempferol, glycyrrhizin, nobiletin, 6-gingerol, elemicin, atractylenolide III, nootkatone, and atractylenolide I) in Hyangso-san using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Column for the separation of the 15 ingredients was used a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ by using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient condition. Identifications of all analytes were performed using a Waters ACQUITY TQD LC-MS/MS system. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}L$, respectively. Correlation coefficient of the calibration curve was ${\geq}0.9958$. The values of limits of detection and quantification of the 15 components were 0.002-4.29 and 0.01-12.88 ng/mL, respectively. The result of an analysis using the established LC-MS/MS method, kaempferol and atractylenolide I were not detected, while other 13 compounds were 0.08-56.87 mg/g in lyophilized Hyangso-san sample.

Hyperuricemic effects of Alpiniae Oxyphyllae Fructus extracts (고요산동물에서의 익지인의 요산저하 효과)

  • Lee, Young-Sil;Kim, Jiyoun;Kim, Seung-Hyung;Kim, Dong-Seon
    • The Korea Journal of Herbology
    • /
    • v.32 no.6
    • /
    • pp.23-29
    • /
    • 2017
  • Objective : Hyperuricemia is a metabolic disease characterized by elevated blood uric acid levels, and its prevalence is rapidly increasing worldwide. Alpiniae Oxyphyllae Fructus (AO) belonging to Zingiberaceae is one of well-known traditional medicines in China and Korea, and has been used to treat intestinal disorders, urosis, diuresis, and chronic glomerulonephritis traditionally. However, the effect of AO has not been studied. In this study we investigated the anti-hyperuricemic effect of AO, and the mechanisms underlying the effect in potassium oxonate (PO)-induced hyperuricemic rats. Methods : To examine the anti-hyperuricemic effects of the AO extract, serum uric acid levels were analyzed in normal and PO-induced hyperuricemic rats. The mechanism underlying the effects of the AO extract on uric acid levels was studied through xanthine oxidase (XOD) activity test and uric acid uptake assay in vitro. The chemical finger printing of the AO extract was analyzed using HPLC-DAD. Results : The AO extract significantly reduced serum uric acid levels in normal as well as PO-induced hyperuricemic rats. It also significantly inhibited the uptake of uric acid in oocytyes and human embryonic kidney cells (HEK293) expressing urate transporter (URAT)1, but not XOD activity in vitro. The chemical finger printing analysis of the AO extract showed nootkatone as a main component. Conclusion : The AO extract exhibits anti-hyperuricemic effects, and these effect were accompanied by increasing excretion of uric acid in kidney. Therefore, the AO extract could be used for prevention or treatment of hyperuicemia and gout.