• 제목/요약/키워드: Nootkatone

검색결과 9건 처리시간 0.026초

Sesquiterpene Derivatives Isolated from Cyperus rotundus L. Inhibit Inflammatory Signaling Mediated by NF-${\kappa}B$

  • Khan, Salman;Choi, Ran-Joo;Lee, Dong-Ung;Kim, Yeong-Shik
    • Natural Product Sciences
    • /
    • 제17권3호
    • /
    • pp.250-255
    • /
    • 2011
  • The immune system is finely balanced by the activities of pro-inflammatory and anti-inflammatory mediators or cytokines. Unregulated activities of these mediators can lead to the development of various inflammatory diseases. A variety of safe and effective anti-inflammatory agents are available with many more drugs under development. Of the natural compounds, the sesquiterpenes (nootkatone, ${\alpha}$-cyperone, valencene and ${\alpha}$-selinene) isolated from C. rotundus L. have received much attention because of their potential antiinflammatory effects. However, limited studies have been reported regarding the influence of sesquiterpene structure on anti-inflammatory activity. In the present study, the anti-inflammatory potential of four structurally divergent sesquiterpenes was evaluated in lipopolysaccaride (LPS)-stimulated RAW 264.7 cells, murine macrophages. Among the four sesquiterpenes, ${\alpha}$-cyperone and nootkatone, showed stronger anti-inflammatory and a potent NF-${\kappa}B$ inhibitory effect on LPS-stimulated RAW 264.7 cells. Molecular analysis revealed that various inflammatory enzymes (iNOS and COX-2) were reduced significantly and this correlated with downregulation of the NF-${\kappa}B$ signaling pathway. Additionally, electrophoretic mobility shift assays (EMSA) elucidated that nootkatone and ${\alpha}$-cyperone dramatically suppressed LPS-induced NF-${\kappa}B$-DNA binding activity using 32Plabeled NF-${\kappa}B$ probe. Hence, our data suggest that ${\alpha}$-cyperone and nootkatone are potential therapeutic agents for inflammatory diseases.

HPLC-UV 방법을 이용한 향부자 분석법 개발과 국산 및 중국산 향부자의 패턴비교 (Development of Content Analysis for Cyperus rotundus by HPLC-UV and a Comparison between Chinese and Domestic Cyperi Rhizoma)

  • 서지윤;김진아;김성건;유정;황완균
    • 약학회지
    • /
    • 제56권5호
    • /
    • pp.280-287
    • /
    • 2012
  • A high-performance liquid chromatography (HPLC) combined with ultraviolet (UV) method for the simultaneous determination of ${\alpha}$-cyperone and nootkatone was developed for the quality control of Cyperus rotundus Linne. The separation was performed on a KR100-$5C_{18}$ ($4.6{\times}250mm$) column, and an elution gradient composed of methanol and water with a flow-rate of 1.0 ml/min. Detection wavelength was set at 254 nm. The optimum extraction for the detection of the ${\alpha}$-cyperone and nookatone was achieved by ultrasonic with methanol for an hour. Two marker compounds ${\alpha}$-cyperone and nootkatone in Cyperi Rhizoma showed good linearity ($R^2$ >0.999) in the concentration range of $12.5{\mu}g/ml$ to $200{\mu}g/ml$. The developed method provided satisfactory precision and accuracy with overall intra-day and inter-day variations of 0.04~1.23% and 0.08~0.68%, respectively, and the overall recoveries of 97.45~105.58% for the two compounds analyzed. Additionally, a difference was observed in the cluster analysis and principal component analysis between Cyperi Rhizoma in Korea and China. The result demonstrated that the principal component analysis is useful to distinguish between Cyperi Rhizoma in Korea and China.

The Volatile Composition of Kiyomi Peel Oil (Citrus unshiu Marcov×C. sinensis Osbeck) Cultivated in Korea

  • Song, Hee-Sun
    • Preventive Nutrition and Food Science
    • /
    • 제13권4호
    • /
    • pp.292-298
    • /
    • 2008
  • The volatile composition of Kiyomi peel oil cultivated in Korea was studied by using gas chromatography and gas chromatography-mass spectrometry. The peel oil from the Kiyomi fruit was prepared by using a cold-pressing extraction method. Among the 65 components quantified in Kiyomi oil, 25 terpene hydrocarbons and 40 oxygenated compounds were identified, with peak weight percentages measuring 94.5% and 4.9%, respectively. Limonene was the predominant compound (87.5%), followed by myrcene (2.4%), sabinene (0.9%), $\alpha$-pinene (0.8%), $\beta$-sinensal (0.8%), (Z)-$\beta$-farnesene (0.7%), neryl acetate (0.6%), valencene (0.5%), $\alpha$-farnesene (0.5%), and $\alpha$-sinensal (0.5%). A unique characteristic of the volatile profile of the Kiyomi oil was the proportion of aldehydes (2.7%), which resulted from the relative abundance of $\alpha$- and $\beta$-sinensal. Another unique characteristic of the Korean Kiyomi oil was its relative abundance of $\beta$-sinensal, (Z)-$\beta$-farnesene, neryl acetate, valencene, $\alpha$-sinensal and nootkatone. Valencene and $\alpha$- and $\beta$-sinensal were regarded as the influential components of Korean Kiyomi peel oil.

Sesquiterpenoids from the heartwood of Juniperu s chinensis

  • Jung, Hee Jin;Min, Byung-Sun;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • 제23권3호
    • /
    • pp.208-212
    • /
    • 2017
  • A new sesquiterpenoid, 11-hydroxy-valenc-1(10),3(4)-dien-2-one (3), two chemically synthesized but first isolate from nature, $3-oxocedran-8{\beta}-ol$ (1) and valenc-1(10),3(4),11(12)-trien-2-one (2) along with four known compounds, sugiol (4), (+)-nootkatone (5), 11-hydroxy-valenc-1(10)-en-2-one (6), and clovandiol (7), were isolated from the heartwood of Juniperus chinensis. All chemical structures were elucidated using extensive spectroscopic analysis including 1D and 2D NMR spectroscopy. Valenc-1(10),3(4),11(12)-trien-2-one (2) exhibited significant inhibitory activity against butyrylcholinesterase with an $IC_{50}$ value of $68.45{\mu}M$.

연속수증기증류추출법에 의한 오렌지와 자몽의 휘발성 유기화합물 확인 (Determination of the volatile flavor components of orange and grapefruit by simultaneous distillation-extraction)

  • 홍영신;김경수
    • 한국식품저장유통학회지
    • /
    • 제23권1호
    • /
    • pp.63-73
    • /
    • 2016
  • 오렌지와 자몽의 휘발성 향기성분을 분석하기 위하여 과육과 과피로 분리하여 각각 SDE 방법으로 휘발성 성분을 추출한 후 GC-MS로 확인하였다. 오렌지의 과육 및 과피의 휘발성 향기성분은 각각 120.55 및 4,510.81 mg/kg이며, 자몽의 과육과 과피는 195.60 및 4,223.68 mg/kg으로 확인되었다. 오렌지와 자몽의 휘발성 향기성분 중 가장 높은 함량으로 확인된 성분은 monoterpene류인 limonene으로 과육은 65.32 및 105.00 mg/kg으로 과피는 3,008.10 및 1,870.24 mg/kg으로 정량되었다. Limonene, sabinene, ${\alpha}$-pinene, ${\beta}$-myrcene, linalool, (Z)-limonene oxide, (E)-limonene oxide 등은 오렌지와 자몽의 공통적인 주요 향기로 확인되었다. 오렌지의 특징적인 향기성분은 valencene이며, 자몽은 (E)-caryophyllene 및 nootkatone으로 확인되었다. $\delta$-3-Carene, ${\alpha}$-terpinolene, borneol, citronellyl acetate, piperitone 및 ${\beta}$-copaene 등은 오렌지에서만 확인된 화합물이며, ${\beta}$-pinene, ${\alpha}$-terpinyl acetate, bicyclogermacrene, nootkatol, ${\beta}$-cubebene 및 sesquisabinene는 자몽에서만 확인되었다. Phenylacetal dehyde, camphor, limona ketone, (Z)-caryophyllene은 과육에서 확인되었으며, ${\alpha}$-thujene, citronellal, citronellol, ${\alpha}$-sinensal, ${\gamma}$-muurolene, germacrene D 등은 과피에서만 확인된 성분이다. 본 연구결과 오렌지 및 자몽의 과육과 과피의 휘발성 향기성분 함량과 조성의 차이를 확인할 수 있었다.

화기 부위에 따른 심비디움의 향기 패턴 및 성분 분석 (Fragrance Pattern and Volatile Components According to Floral Organs in Cymbidium)

  • 김예진;안명숙;이수영;박필만;안혜련;박부희
    • 한국자원식물학회지
    • /
    • 제35권2호
    • /
    • pp.362-371
    • /
    • 2022
  • 본 연구는 화기 부위에 따른 국산 심비디움 '샐빛'과 '미단'의 향기 특성을 분석하고자 수행하였다. 시험 재료로 국립원예특작과학원 화훼과 시험포장에서 재배한 만개한 꽃을 꽃잎, 꽃받침, 순판, 컬럼으로 나누어 GC 기반 전자코를 통해 향기 패턴과 주요 향기 성분을 분석하였다. 그 결과, 두 품종 모두 화기 부위에 따라 PCA와 DFA plot에서 뚜렷한 향기 패턴 차이를 보였고, 각 화기 부위별 무취공기 대조구 간의 기하학적 거리는 꽃받침이 가장 멀었으며, 향기패턴 식별지수(PDI) 또한 대조구와 꽃받침 사이에서 가장 높게 나타났다. 주요 향기 성분 중 nootkatone 등의 성분은 '샐빛'과 '미단' 두 품종 모두네 개의 화기조직에서 공통적으로 검출된 반면, '미단'에서만 검출되는 decane과 같이 일부 성분은 특정 품종이나 화기 부위에서만 특이적으로 발견되었다. 따라서 본 연구결과는 품종과 화기 부위에 따른 향기패턴과 주요 향기 성분을 확인함으로써 향기 산업에 필요한 효율적인 원료 선택과 국산 품종의 이용 확대를 위해 유용한 정보를 제공할 것으로 기대된다. 특히 최근 인공 가향제에 대한 부정적 인식과 천연 향기 원료에 대한 수요가 증가하는 점을 감안했을 때, 앞으로도 지속적인 유향성 난 품종 육성과 이를 산업적으로 활용하기 위한 향기 연구가 필요할 것으로 생각된다.

LC-MS/MS를 이용한 향사육군자탕의 주요성분의 함량분석 (Quantitative Analysis of Hyangsayukgunja-Tang Using an Ultra-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry)

  • 서창섭;신현규
    • 생약학회지
    • /
    • 제46권4호
    • /
    • pp.352-364
    • /
    • 2015
  • The aim of this study was to quantitatively analyze for quality assessment of eighteen marker compounds, including homogentisic acid, 3,4-dihydroxybenzaldehyde, spinosin, liquiritin, hesperidin, ginsenoside Rg1, liquiritigenin, ginsenoside Rb1, glycyrrhizin, 6-gingerol, atractylenolide III, honokiol, costunolide, dehydrocostuslactone, atractylenolide II, nootkatone, magnolol, and atractylenolide I, in Hyangsayukgunja-tang using an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer. The column for separation of eighteen marker components were used a UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}$) and kept at $45^{\circ}C$ by gradient elution with 0.1% (v/v) formic acid in water and acetonitrile as mobile phase. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}l$, respectively. The correlation coefficient of all marker compounds was ${\geq}0.9914$, which means good linearity, within the test ranges. The limits of detection and quantification values of the all analytes were in the ranges 0.04-1.11 and 0.13-3.33 ng/mL, respectively. As a result, five compounds, homogentisic acid, 3,4-dihydroxybenzaldehyde, spinosin, liquiritigenin, and atractylenolide I, in this sample were not detected and the amounts of the 13 compounds except for the 5 compounds were $8.10-6736.37{\mu}g/g$ in Hyangsayukgunja-tang extract.

LC-MS/MS를 이용한 향소산 중 15종 성분의 정량분석 (Quantitative Analysis of the Fifteen Constituents in Hyangso-San by LC-MS/MS)

  • 서창섭;신현규
    • 생약학회지
    • /
    • 제47권4호
    • /
    • pp.381-388
    • /
    • 2016
  • Hyangso-san is a traditional herbal medicine that consists of the seven herbal medicines, Cyperi Rhizoma, Perillae Folium, Atractylodis Rhizoma, Citri Unshius Pericarpium, Glycyrrhizae Radix et Rhizoma, Zingiberis Rhizoma Crudus, and Allii Fistulosi Bulbus. Hyangso-san has long been clinically used to treat the influenza, including headache, ferver, chills, and pantalgia. In this study, we were performed the simultaneous analysis of the 15 marker compounds (liquiritin apioside, liquiritin, ferulic acid, naringin, hesperidin, rosmarinic acid, liquiritigenin, kaempferol, glycyrrhizin, nobiletin, 6-gingerol, elemicin, atractylenolide III, nootkatone, and atractylenolide I) in Hyangso-san using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Column for the separation of the 15 ingredients was used a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ by using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient condition. Identifications of all analytes were performed using a Waters ACQUITY TQD LC-MS/MS system. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}L$, respectively. Correlation coefficient of the calibration curve was ${\geq}0.9958$. The values of limits of detection and quantification of the 15 components were 0.002-4.29 and 0.01-12.88 ng/mL, respectively. The result of an analysis using the established LC-MS/MS method, kaempferol and atractylenolide I were not detected, while other 13 compounds were 0.08-56.87 mg/g in lyophilized Hyangso-san sample.

고요산동물에서의 익지인의 요산저하 효과 (Hyperuricemic effects of Alpiniae Oxyphyllae Fructus extracts)

  • 이영실;김지연;김승형;김동선
    • 대한본초학회지
    • /
    • 제32권6호
    • /
    • pp.23-29
    • /
    • 2017
  • Objective : Hyperuricemia is a metabolic disease characterized by elevated blood uric acid levels, and its prevalence is rapidly increasing worldwide. Alpiniae Oxyphyllae Fructus (AO) belonging to Zingiberaceae is one of well-known traditional medicines in China and Korea, and has been used to treat intestinal disorders, urosis, diuresis, and chronic glomerulonephritis traditionally. However, the effect of AO has not been studied. In this study we investigated the anti-hyperuricemic effect of AO, and the mechanisms underlying the effect in potassium oxonate (PO)-induced hyperuricemic rats. Methods : To examine the anti-hyperuricemic effects of the AO extract, serum uric acid levels were analyzed in normal and PO-induced hyperuricemic rats. The mechanism underlying the effects of the AO extract on uric acid levels was studied through xanthine oxidase (XOD) activity test and uric acid uptake assay in vitro. The chemical finger printing of the AO extract was analyzed using HPLC-DAD. Results : The AO extract significantly reduced serum uric acid levels in normal as well as PO-induced hyperuricemic rats. It also significantly inhibited the uptake of uric acid in oocytyes and human embryonic kidney cells (HEK293) expressing urate transporter (URAT)1, but not XOD activity in vitro. The chemical finger printing analysis of the AO extract showed nootkatone as a main component. Conclusion : The AO extract exhibits anti-hyperuricemic effects, and these effect were accompanied by increasing excretion of uric acid in kidney. Therefore, the AO extract could be used for prevention or treatment of hyperuicemia and gout.