• Title/Summary/Keyword: Nonwoven fabrics

Search Result 91, Processing Time 0.033 seconds

Functional Modification of Sanitary Nonwoven Fabrics by Chitosan Treatment (Part II) -Focused on Changes in Physical Properties- (키토산 처리에 의한 위생용 부직포의 기능성 개질화 (제2보) -물성 변화를 중심으로-)

  • Bae, Hyun-Sook;Kang, In-Sook;Park, Hye-Won;Ryou, Eun-Jeong;Kwon, Jay-Cheol
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1662-1671
    • /
    • 2007
  • The change in physical properties of polypropylene nonwoven fabrics used as top sheet for disposable sanitary goods was carried out using chitosan that is a type of natural polymer and has excellent human affinity by varying the molecular weight and concentration of chitosan. Low molecular weight(LMW) chitosan treated fabrics were found to be evenly coated on fabrics and had better dyeability by apparent dye uptake and its deodorization rate increased over the time. On the other hand, high molecular weight(HMW) chitosan treated fabrics showed higher add-on ratio and its dynamic water absorption rate and represented an increase in water transport rate. With chitosan treatment, its air permeability was improved. Regardless of the type of bacteria and chitosan concentration, its antibacterial activity was excellent in the case of the HMW chitosan treatment. In this regard, chitosan treatments by using a relatively high molecular weight was found as an effective way in the functional improvement of moisture properties and antibacterial activity including their most important performance in sanitary nonwoven fabrics.

Frictional Characteristics of Woven and Nonwoven Wipes

  • Das A.;Kothari V. K.;Mane D.
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.318-321
    • /
    • 2005
  • Demand for the fabric wipes is growing continuously. Wipes in industry are used for cleaning purpose. Cleaning involves rubbing action, so it is very important to know how much frictional force is encountered during the cleaning action. In this study the effects of normal load, sliding speed on frictional characteristics of nonwoven and woven wipes, both dry and wetted with different liquids, against glass and floor tile surfaces have been reported. With the increase in the normal load the coefficient of friction goes on decreasing for both nonwoven and woven wipes and this trend is observed in both dry and wet wipes. The coefficient of friction of both nonwoven and woven wipes against glass surface is in general higher than the floor tile surface. The wipes wetted with water shows an increase in coefficient of friction as compared to dry sample, but there is reduction in the coefficient of friction when the wipe samples are wetted with vegetable oil. In case of dry wipes, the coefficient of friction in case of nonwoven wipe is higher than the woven wipe. In case of woven wipes, the ranges of coefficient of friction either due to change in liquid type, normal load or sliding speed are in general smaller than that in case of nonwoven fabrics.

Effects of needle punching process and structural parameters on mechanical behavior of flax nonwovens preforms

  • Omrani, Fatma;Soulat, Damien;Ferreira, Manuela;Wang, Peng
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.157-168
    • /
    • 2019
  • The production of nonwoven fabrics from natural fibers is already expanding at an industrial level for simple curvature semi-structural part in the automotive industry. To develop their use for technical applications, this paper provides an experimental study of the mechanical behavior of flax-fiber nonwoven preforms. A comparison between different sets of carded needle-punched nonwoven has been used to study the influence of manufacturing parameters such as fibers' directions, the area and the needle punching densities. We have found that the anisotropy observed between both directions can be reduced depending on these parameters. Furthermore, this work investigates the possibility to form double curvature parts such as a hemisphere as well as a more complex shape such as a square box which possesses four triple curvature points. We propose a forming process adapted to the features of the nonwoven structure. The purpose is to determine their behavior under high stress during various forming settings. The preforming tests allowed us to observe in real time the manufacturing defects as well as the high deformability potential of flax nonwoven.

A study on the Development of Antimicrobial Finished and Water Repellent Nonwoven Fabrics using Organic Silicon Quaternary Ammonium Salt (항균성 및 발수성 부직포 소재의 개발에 관한 연구 - 유기실리콘 제 4 차 암모늄염의 이용 -)

  • Cho Gil Soo;Cho Jeong Sook;Sohn Mi Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.14 no.3 s.35
    • /
    • pp.216-221
    • /
    • 1990
  • This study was performed for the development of antimicrobial finished nonwoven fabrics with water repellency. And it was aimed to examine the changes of moisture related properties and air permeability of the finished fabrics. Viscose rayon nonwoven fabrics were treated with organic silicon quaternary ammonium salt having carbon numbers of 16, which was synthesized for this study Antimicrobial activity was evaluated by shake flask method and the reactivity of antimicrobial agent was measured by degree of luminescence from inductively coupled plasma. Water repellency of treated specimen was evaluated by dynamic water absorption measurement and air permeability was measured by Frazier method. The results obtained from this study were as follows: 1. Excellent antimicrobial activity was obtained for the high concentration of treatment and the durability of finishing after laundering was better as the treatment concentration was higher 2. Silicon contents taken up by specimen increased with increased treatment concentration. 3. Dynamic water absortion of treated specimen decreased compared to that of untreated. And, it was lowered as the treatment of concentration increased and as the silicon content increased. 4. Moistuie regain and uptake with lapse of time of treated specimen increased compared to those of untreated. But, air permeability of treated specimen decreased.

  • PDF

A Study on the Handle and Texture of Artificial Suede (인조 스웨이드의 handle 및 질감에 관한 연구)

  • 신경인;김종준
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.1
    • /
    • pp.128-137
    • /
    • 2000
  • A range of suede-like samples were collected including woven fabric type, nonwoven fabric type, and natural suede(sheep). The surface textures of these suede-like fabrics are rather diverse and different from the plain filament type fabrics since there are a lot of fine surface free fiber ends. Physical and mechanical measurements were carried using the KES equipments. Based on the Kawabata-Niwa translational equation, primary hand values and THV were calculated. Uniaxial tensile tests were performed. Using glossmeter, the reflectance pattern was analyzed at different incidence and receiving angles. In order to capture the surface images of the specimens, a CCD camera and frame grabber connected to a PC were employed. The reflectance uniformity of the images was measured with line-profile analysis and standard deviation values of the profile of the images were calculated. After the multiscale wavelet transfermation, correlation among the transformed image was analyzed at each scale. The reflectance uniformity of the natural suede was better than that of nonwoven type suede, while that of woven type suede was the last among the selected three samples(natural suede, nonwoven type, woven type). The correlation analysis among images has shown the possibility of using the wavelet transformation of the images as one of the measures to detect similarities among the textured specimens.

  • PDF

Studies on Mechanical Performance in Hydro-entangled Nonwovens (하이드로 인탱글드 부직포의 역학특성에 관한 연구)

  • Kim, Han-Seong;B. Pourdeyhimi
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.119-121
    • /
    • 2003
  • Hydroentanglement describes a versatile process for manufacturing nonwoven fabrics using foe, closely speed, high-velocity jets of water and entangles loose arrays of fibers. The resultant fabrics rely primarily on fiber-to-fiber friction to achieve physical integrity and are characterized by relatively high strength, flexibility, and conformability. These technologies can use efficiently the majority of all types of fibers and produce fabrics that could achieve properties equivalent to reverts. (omitted)

  • PDF