• Title/Summary/Keyword: Nontoxic green product

Search Result 4, Processing Time 0.015 seconds

The radioprotective effects of green tea and its fractions in Gamma-irradiated mice (감마선 조사 마우스에서 녹차 및 분획의 방사선 장해 경감 효과)

  • Kim, Se-ra;Lee, Hae-june;Kim, Sung-ho
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.633-639
    • /
    • 2003
  • We investigated the effect of green tea and its fractions of alcohol and polysaccharide on jejunal crypt survival, endogenous spleen colony formation, and apoptosis in jejunal crypt cells of mice irradiated with high and low dose of gamma-irradiation. Jejunal crypts were protected by pretreatment of green tea (i.p.: 50 mg/kg of body weight, at 12 and 36 hours before irradiation., p.o.: 1.25% water extract, for 7days before irradiation, p<0.01) and alcohol and polysaccharide fractions showed no significant modifying effects. Green tea and its fractions administration before irradiation (i.p. at 12 and 36hours before irradiation) resulted in an increase of the formation of endogenous spleen colony (p<0.05). The frequency of radiation-induced apoptosis in intestinal crypt cells was also reduced by pretreatment of green tea (i.p. at 12 and 36 hours before irradiation, p<0.05., p.o. for 7days before irradiation, p<0.001) and its fractions (p<0.001). These results indicated that green tea might be a useful radioprotector, especially since it is a relatively nontoxic natural product. Further studies are needed to characterize better the promotion nature of green tea and its components.

Biogenic Nano-Synthesis; towards the Efficient Production of the Biocompatible Gold Nanoparticles

  • Ghodake, Gajanan;Eom, Chi-Yong;Kim, Si-Wouk;Jin, Eon-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2771-2775
    • /
    • 2010
  • We present a rapid biogenic method for the production of nanoscale gold particles using pear extract. The formation and stability of pear-derived gold nanoparticles (Pear-AuNPs) were monitored by ultraviolet-visible spectroscopy. Their morphology, elemental composition and crystalline phase were determined by transmission electron microscopy, energy-dispersive X-ray spectroscopy and selected area electron diffraction. The average core size of crystalline Pear-AuNPs was in the range of $10{\pm}5\;nm$ and the observed morphology was spherical. The X-ray photoelectron spectrum showed a strong peak for the pure 'Au' phase. The circular dichroism spectrum indicated the natural capping ability of the pear extract, which generated peptide-gold nanoparticles. These nanoparticles were stable in aqueous solution for two months. A cell viability assay of Pear-AuNPs showed biocompatibility with human embryonic kidney 293 cells. Accordingly, this eco-friendly process for the bio-mimetic production of Pear-AuNPs is nontoxic in nature; consequently, it will find potential application in nano-biotechnology.

Evaluation on the radioprotective effect of Korean favorite teas (한국인 기호 차류의 방사선 장해 경감효과 평가)

  • Kim, Se-Ra;Lee, Hae-June;Oh, Heon;Lee, Jin-Hee;Kim, Hu-Kyung;Kim, Tae-Hwan;Jo, Sung-Kee;Kim, Sung-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.4
    • /
    • pp.475-483
    • /
    • 2002
  • We performed this study to determine the effect of Korean favorite teas (green tea, ginseng tea, coffee and barley tea) on jejunal crypt survival, endogenous spleen colony formation and apoptosis in jejunal crypt cells of mice irradiated with high and low dose of ${\gamma}$-radiation. Jejunal crypts were protected by pretreatment of green tea (P.O.: 1.25% water extract, for 7 days before irradiation., I.P.: 50 mg/kg of body weight, at 12 and 36 hours before irradiation, p<0.01) or ginseng (I.P.: 50 mg/kg of body weight, at 12 and 36 hours before irradiation, p<0.05). Green tea (p<0.05) or ginseng (p<0.05) administration before irradiation (I.P. at 12 and 36 hours before irradiation) resulted in an increase of t formation of endogenous spleen colony. The frequency of radiation-induced apoptosis was also reduced by pretreatment of green tea (P.O.: p<0.005, I.P.: p<0.05), pretreatment of ginseng (P.O.: p<0.005, I.P.: p<0.005) or posttreatment of ginseng (I.P.: 50 mg/kg of body weight, at 30 minutes after irradiation, p<0.05). Treatment with coffee or barley tea showed no significant modifying effects on the radiation-induced damages. These results indicated that green tea and ginseng might be a useful radioprotector, especially since it is a relatively nontoxic natural product. Further studies are needed to characterize better the promotion nature of green tea, ginseng and its components.

Modification of Gamma-radiation Response in Mice by Green Tea and Diethyldithiocarbamate (마우스에서 방사선 영향에 대한 녹차와 Diethyldithiocarbamate의 조절효과)

  • Kim, Se-Ra;Kim, Sung-Ho;Lee, Hae-June;Oh, Heon;Ryu, Si-Yun;Lee, Yun-Sil;Kim, Tae-Hwan;Jo, Sung-Kee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.7
    • /
    • pp.1108-1113
    • /
    • 2003
  • We performed this study to determine the effect of green tea on jejunal crypt survival, endogenous spleen colony formation, and apoptosis in jejunal crypt cells of mice irradiated with high and low dose of gammairradiation. The radioprotective effect of green tea was compared with the effect of diethyldithiocarbamate (DDC). Jejunal crypts were protected by pretreatment of green tea (p<0.01). Green tea administration before irradiation resulted in an increase of the formation of endogenous spleen colony (p<0.05). The frequency of radiation-induced apoptosis in intestinal crypt cells was also reduced by pretreatment of green tea (p<0.05). The radioprotective effect on jejunal crypts and apoptosis in the DDC treated group appeared similar to those in the green tea treated groups. Treatment with DDC showed no significant modifying effects on the formation of endogenous spleen colony. These results indicated that green tea might be a useful radioprotector, especially since it is a relatively nontoxic natural product. Further studies are needed to characterize better the promotion nature of green tea and its components.