• Title/Summary/Keyword: Nonpoint source pollution management

Search Result 115, Processing Time 0.023 seconds

Evaluation of Modeling Approach for Suspended Sediment Yield Reduction by Surface Cover Material using Rice Straw at Upland Field (모델링 기법을 이용한 밭의 볏짚 지표피복의 부유사량 저감효과 평가 방법)

  • Park, Youn Shik;Kum, Donghyuk;Lee, Dong Jun;Choi, Joongdae;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.108-114
    • /
    • 2016
  • Sediment-laden water leads to water quality degradation in streams; therefore, best management practices must be implemented in the source area to control nonpoint source pollution. Field monitoring was implemented to measure precipitation, direct runoff, and sediment concentrations at a control plot and straw-applied plot to examine the effect on sediment reduction in this study. A hydrology model, which employs Curve Number (CN) to estimate direct runoff and the Universal Soil Loss Equation to estimate soil loss, was selected. Twenty-five storm events from October 2010 to July 2012 were observed at the control plot, and 14 storm events from April 2011 to July 2011 at the straw-applied plot. CN was calibrated for direct runoff, and the Nash-Sutcliffe efficiency and coefficient of determination were 0.66 and 0.68 at the control plot. Direct runoff at the straw-applied plot was calibrated using the percentage direct runoff reduction. The estimated reduction in sediment load by direct runoff reduction calibration alone was acceptable. Therefore, direct runoff-sediment load behaviors in a hydrology model should be considered to estimate sediment load and the reduction thereof.

Reduction of Agricultural Non-point Pollution Source by Scenarios of Best Management Practices on Cropping System Alternatives of Main Upland Crop in Saemangeum Watershed (새만금 유역 주요 밭작물 작부체계 최적관리기법 시나리오별 농업비점오염원 저감)

  • Son, Jae Gwon;Lee, Gyeong Ae;Yoo, Dong Su;Cho, JaeYoung
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • Nonpoint pollution sources from agricultural activities are a major cause of water quality impairment. A nutrient management program utilizes farm practices that maintain efficient crop production systems and control agricultural nonpoint pollution sources. The objectives of present study were to identify appropriate best management practices (BMPs) according to changes of cropping system of main upland crop for reducing AGNPs loadings and to simulate the effects of the application of the several BMPs scenarios in Saemangeum watershed. The selected BMP scenarios were: 1) to convert naked barley and hulled barley to hairy vetch or chinese milk vetch, 2) to convert red pepper to soybean crop, and 3) to combine two scenarios, converting naked barley and hulled barley to hairy vetch or chinese milk vetch + converting red pepper to soybean crop. As a result of BMPs application, the crop requirement of nitrogen and phosphorus for upland crop reduced nitrogen by 41% and phosphorus by 47% in scenario 1, whereas scenario 2 reduced nitrogen by 30% and phosphorus by 23%. Overall, scenario 3 reduced nitrogen by 72% and phosphorus by 70% in agricultural non-point pollution sources associated with chemical fertilizer and livestock manure in Saemangeum watershed.

The Effect of Connected Bioretention on Reduction of Surface Runoff in LID Design (LID 설계시 식생체류지간 연결에 의한 강우유출수 저감 효과분석)

  • Jeon, Ji-Hong;Seo, Seong-Cheol;Park, Chan-Gi
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.562-569
    • /
    • 2016
  • Recently, Low Impact Development (LID) is being used in Korea to control urban runoff and nonpoint source pollution. In this study, we evaluated the reduction of surface runoff from a study area, as the effect of connecting three bioretention as LID-BMP. Surface runoff and storage volume of bioretention is estimated by the Curve Number (CN) method. In this study, the storage volume of bioretention is divided by the volume of surface runoff and precipitation which directly enters the bioretention. The ratio of captured surface runoff volume to storage volume is highly influenced by the ratio of drainage area to surface area of bioretention. The high bioretention surface area-to-drainage area ratio captures more surface runoff. The ratio of 1.2 captures 51~54% of the total surface runoff, ranging from 5-30cm of bioretention depth; a ratio of 6.2 captures 81~85%. Three connected bioretentions could therefore captures much more runoff volume, ranging from $35.8{\sim}167.3m^3$, as compared to three disconnected bioretentions at their maximum amount of precipitation with non-effluent from the connecting three bioretentions. Hence, connecting LID-BMPs could improve the removal efficiencies of surface runoff volume and nonpoint source pollution.

Changes in Stream Water Quality According to Land Use at Kyong-an Stream (京安川 流域의 土地利用에 따른 河川物質의 變化)

  • Yim, Yang-Jai;Bang, Je-Yong;Kim, Yoon-Dong
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.341-351
    • /
    • 1995
  • The relationship between land uses and water quality was investigated at Kyong-an Stream. Some 70% of this watershed was forested area, half of which was comprised of Pinus densilflora community. Concentrations of $NH_4^{+},\;NO_3^{-},\;NO_2^{-}, total nitrogen, $Cl^{-},\;PO_4^{3-}$, DO, and BOD increased gradually from upstream to downstream, whereas heavy metals did not have such tendancy with the exception of a few sites. Urban area was significantly correlated with hardness and chloride concentration. Relationship among phosphate concentration(P), cultivated field area(F), and stream length(S) in each basin was P = 1.7912 F/S+0.0103. the concentration of $NH_4^{+}$ was positively correlated with the population size and cow density within the catchment. The effect of urban area(U) and stream length of the pH(pH) was represented by pH = -4.7344 U/S+6.52. It can be concluded that the control of nonpoint source pollution as well as point source pollution is one of the important problems of water quality management, especially geological properties must be considered for sustainable development.

  • PDF

Estimation of Optimal Size of the Treatment Facility for Nonpoint Source Pollution due to Watershed Development (비점오염원의 정량화방안에 따른 적정 설계용량결정)

  • Kim, Jin-Kwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.149-153
    • /
    • 2008
  • The pollutant capacity occurred before and after the development of a watershed should be quantitatively estimated and controlled for the minimization of water contamination. The Ministry of Environment suggested a guideline for the legal management of nonpoint source from 2006. However, the rational method for the determination of treatment capacity from nonpoint source proposed in the guideline has the problem in the field application because it does not reflect the project based cases and overestimates the pollutant load to be reduced. So, we perform the standard rainfall analysis by analytical probabilistic method for the estimation of an additional pollutant load occurred by a project and suggest a methodology for the estimation of contaminant capacity instead of a simple rational method. The suggested methodology in this study could determine the reasonable capacity and efficiency of a treatment facility through the estimation of pollutant load from nonpoint source and from this we can manage the watershed appropriately. We applied a suggested methodology to the projects of housing land development and a dam construction in the watersheds. When we determine the treatment capacity by a rational method without consideration of the types of projects we should treat the 90% of pollutant capacity occurred by the development and to do so, about 30% of the total cost for the development should be invested for the treatment facility. This requires too big cost and is not realistic. If we use the suggested method the target pollutant capacity to be reduced will be 10 to 30% of the capacity occurred by the development and about 5 to 10% of the total cost can be used. The control of nonpoint source must be performed for the water resources management. However it is not possible to treat the 90% of pollutant load occurred by the development. The proper pollutant capacity from nonpoint source should be estimated and controlled based on various project types and in reality, this is very important for the watershed management. Therefore the results of this study might be more reasonable than the rational method proposed in the Ministry of Environment.

A Study on the Emission Characteristic and Improvement Plan of Domestic Sewage(NPS) in Rural Area (농촌지역 생활하수의 비점오염 유출특성 및 개선방안 연구)

  • SON, Jinkwan;KIM, Changhyun;Yun, Sungwook;KONG, Minjae;CHOI, Duckkyu;KANG, Donghyeon;Park, Minjung;KANG, Banghun
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.4
    • /
    • pp.37-46
    • /
    • 2018
  • The nonpoint pollution source (NPS) is irregular in the amount of generated and runoff. About 70% of the water pollution sources in Korea are NPS. Most of the rural areas are small towns with less than 50 families. This is where sewerage supply is poor. This is where the domestic swage of the house flows directly into the small stream. This study investigated the amount and concentration of domestic swage. And investigated NPS for public officials. We have suggested an improvement plan here. Local government officials lack the concept of NPS. Rural residents also do not know about NPS. Therefore, we proposed NPS public relations and education linked to public administration. This is an extension of the national budget and interest. The domestic swage is discharged at about 272 liters per day in a house. We proposed the introduction of small facilities. If the capacity remains, it is suggested to link to cattle shed, pigsty and so on. The BOD, COD, TN, TP, and SS concentrations were all high. This suggested a reduction in concentration in combination with natural water. Finally, NPS facilities were proposed to be put into rural areas. And it was determined that continuous monitoring was necessary. The results of this study were expected to be applied to NPS management.

Analysis of Characteristics of NPS Runoff and Pollution Contribution Rate in Songya-stream Watershed (송야천 유역의 비점오염물질 유출 특성 및 오염기여율 분석)

  • Kang Taeseong;Yu Nayeong;Shin Minhwan;Lim Kyoungjae;Park Minji;Park Baekyung;Kim Jonggun
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.4
    • /
    • pp.316-328
    • /
    • 2023
  • In this study, the characteristics of nonpoint pollutant outflow and contribution rate of pollution in Songya-stream mainstream and tributaries were analyzed. Further, water pollution management and improvement measures for pollution-oriented rivers were proposed. An on-site investigation was conducted to determine the inflow of major pollutants into the basin, and it was found that pollutants generated from agricultural land and livestock facilities flowed into the river, resulting in a high concentration of turbid water. Based on the analysis results of the pollution load data calculated through actual measurement monitoring (flow and water quality) and the occurrence and emission load data calculated using the national pollution source survey data, the S3 and S6 were selected as the concerned pollution tributaries in the Songya-stream basin. Results of cluster analysis using Pearson correlation coefficient evaluation and Density based spatial clustering of applications with noise (DBSCAN) technique showed that the S3 and S6 were most consistent with the C2 cluster (a cluster of Songya-stream mainstream owned area) corresponding to the mainstream of Songya-stream. The analysis results of the major pollutants in the concerned pollution tributaries showed that livestock and land pollutants were the major pollutants. Consequently, optimal management techniques such as fertilizer management, water gate management in paddy, vegetated filter strip and livestock manure public treatment were proposed to reduce livestock and land pollutants.

A Study on the Applicability of Load Duration Curve for the Management of Nonpoint Source Pollution in Seohwacheon Basin (서화천 유역 비점오염원 관리를 위한 부하지속곡선 적용성 연구)

  • KAL, Byung-Seok;MUN, Hyun-Saing;HONG, Seon-Hwa;PARK, Chun-Dong;MIN, Kyeong-Ok;PARK, Jae-Beom
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.174-191
    • /
    • 2020
  • In this study, we analyzed the vulnerable areas of non-point source pollutants and management pollutants and management time by subwatershed curves in the Seohwacheon basin located upstream of Daecheongho. First, in order to create a load duration curve, a long-term flow model SWAT was constructed to create a flow duration curve, and the result was multiplied by the target water quality to create a load duration curve. For the target water quality, monitoring data values measured from November 2017 were used for the management of nonpoint source pollutants in Seohwacheon, and a value corresponding to 60 percentile of the measured data was set as the target water quality. At this time, the target water quality was limited to"slightly good"(II) when the calculated value exceeded"slightly good"(II) of the river living environment standard. The vulnerable areas of non-point source of pollution were selected using the excess rate exceeding the target water quality, and the excess pollutant was judged as a management substance and the management time was selected through seasonal evaluation.

Application of Water Quality Management System of Freshwater Lake

  • Kim, Sun-Joo;Kim, Phil-Shik;Lee, Joo-Young
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.38-48
    • /
    • 2003
  • Lake water quality assessment information is useful to anyone involved in lake management, from lake owners to lake associations. It provides lake water quality criteria, which can improve the ways how to manage out lake resources and how to measure current conditions. It also provides a knowledge base so that the lakes can be protected and restored. Here, the Freshwater Lake Water Quality Management System(FLAQUM) was developed. The results of FLAQUM application by scenario proved that pollutant load at rainfall by the nonpoint sources was much more than normal times at rainfall. From the result of Scenario I (pollutant source increase case), the concentrations of Boryeong freshwater lake were BOD 9.43mg/L, T-N 4.53 mg/L and T-P 0.21 mg/L, respectively, and those values exceed the standard of agricultural water. And in case of Scenario I and II(the present case) excluding Scenario III (pollutant source decrease case), all of T-N and T-P are either mesotrophication or eutrophication, on the other hand when 60% of pollution source is removed, the concentrations of Scenario III were BOD 3.21 mg/L, T-N 0.95 mg/L, T-P 0.11 mg/L, respectively, and which satisfies the standard of agricultural water quality.

A Study on Constructed Wetland Ecological Park Design with Multiple-cell FWS Layout -focus on Structural Design of Sustainable Structured wetland Biotope(SSB) Park- (자유수면형 인공습지 환경·생태공원 설계 -생태적 수질정화비오톱 공원의 구조설계를 중심으로-)

  • Byeon, Wooil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to make a design guideline in designing constructed wetland which can treat water quality both of point and nonpoint source water pollution. It focuses on structural aspects of two case studies of constructed wetland applying SSB(Sustainable Structured wetland Biotope) system in Korea. The constructed wetland of Lake Ju-am which was constructed in 2002 by Environmental Management Corporation, was designed by applying SSB system. It shows higher removal efficiency than expected - 56% of BOD removal efficiency, 60% of T-N removal, and 76% of T-P removal efficiency. In two cases, total wetland areal extents were calculated referred to treatment efficiency. The system is consist of micro-cell structures : inflow channel, forebay, multiple wetland cells and micro-pool. When designing constructed wetland appropriate in local area, the total organic system of vertical and horizontal structure : geology, hydrology, land use, and ecological surroundings of the sites should be considered totally.