• 제목/요약/키워드: Nonmatching Interface

검색결과 3건 처리시간 0.028초

경계 및 불연속의 해결을 위한 이동최소제곱 기반 유한요소의 적용 (Applications of MLS(Moving Least Sqrare)-based Finite Elements for Mechanics Problems Involving Interfaces and Discontinuities)

  • 임재혁;임세영;조영삼
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.567-574
    • /
    • 2006
  • We present applications of MLS-based finite elements, which enable us to easily treat highly complex nonmatching finite element meshes and discontinuities. The shape functions of MLS-based finite element can be easily generated with the aid of Moving Least Square approximation on the parental domain. The major advantage includes that the position of element nodes as well as the number of the element nodes can be conveniently adjusted according to the nature of the problems under consideration, so that finite-element mesh is straightforwardly adapted to evolving discontinuities and. interfaces. Furthermore, we show that the present MLS-based finite elements are efficiently applied for elastic-plastic deformations, wherein the implicit constraint of incompressibility should be properly handled.

  • PDF

이동 최소 제곱 근사와 안정화 절점 적분을 이용한 불일치 유한 요소망의 처리 (A novel treatment of nonmatching finite element meshes via MLS approximation with stabilized nodal integration)

  • 조영삼;김현규;전석기;임세영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.591-598
    • /
    • 2002
  • The interface element method for non-matching FEM meshes is extended using stabilized nodal integration. Two non-matching meshes are shown to be joined together compatibly, with the aid of the moving least square approximation. Using stabilized nodal integration, the interface element method is able to satisfy the patch test, which guarantees the convergence of the method.

  • PDF

유체-고체 상호작용 해석을 위한 계면요소의 개발 (Development of interface elements for the analysis of fluid-solid problems)

  • 김현규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.442-447
    • /
    • 2008
  • This paper presents a new approach to simulate fluid-solid interaction problems involving non-matching interfaces. The coupling between fluid and solid domains with dissimilar finite element meshes consisting of 4-node quadrilateral elements is achieved by using the interface element method (IEM). Conditions of compatibility between fluid and solid meshes are satisfied exactly by introducing the interface elements defined on interfacing regions. Importantly, a consistent transfer of loads through matching interface element meshes guarantees the present method to be an efficient approach of the solution strategy to fluid-solid interaction problems. An arbitrary Lagrangian-Eulerian (ALE) description is adopted for the fluid domain, while for the solid domain an updated Lagrangian formulation is considered to accommodate finite deformations of an elastic structure. The stabilized equal order velocity-pressure elements for incompressible flows are used in the motion of fluids. Fully coupled equations are solved simultaneously in a single computational domain. Numerical results are presented for fluid-solid interaction problems involving nonmatching interfaces to demonstrate the effectiveness of the methodology.

  • PDF