• Title/Summary/Keyword: Nonlinear switching control

Search Result 185, Processing Time 0.023 seconds

Single-Chip Microprocessor Based Instantaneous Voltage Control of Inverter for UPS (Single-Chip 마이크로프로세서를 이용한 UPS용 인버터의 순시전압제어)

  • 최재호;박세현;민완기;김재식
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.6
    • /
    • pp.49-57
    • /
    • 1992
  • This paper proposes a Intel 8097 single-chip microprocessor based instantaneous voltage control scheme of inverter for UPS(Uninterruptible Power Supply). There microprocessors are used to control the output voltage and frequency of the inverter, the synchronization with by-pass, and the switching of the static switch. And the status and operating conditions of UPS systems is monitored by micro processor. The inverter output voltage is controlled instantaneously with a double regulation loop so that it has very good dynamic response for the varying loads or nonlinear loads as a rectifier. And also, the software and hardware of control system is described. From simulation and experimental results, it is shown that the proposed scheme has very good performance.

  • PDF

A NOVEL NEURAL-NETWORK BASED CURRENT CONTROL SCHEME FOR A THREE-LEVEL CONVERTER

  • Choi, J.Y.;Song, J.H.;Choy, I.;Gu, S.W.;Huh, S.H.
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.352-356
    • /
    • 1997
  • This paper present the design of a novel neural-network (NN) based pulse-width modulation (PWM) techniques for a three-level power converter of electric trains along with nonlinear mapping of essential switching patterns and fault tolerance, which are inherent characteristics of NNs. Considering the importance of safety, power factor and harmonics of electric train power converters, two-level type and three-level type of power converters using NNs are precisely investigated and compared in computer simulation. A computer simulation shows that a new current control scheme provides an improved performance over a fixed-band hysteresis current control in many aspects.

  • PDF

Sliding mode controller design of BUCK converter (BUCK 콘버어터의 슬라이딩 모드 제어에 관한 연구)

  • Im, Dal-Ho;Kim, Hee-Jun;Son, Young-Dae;Oh, Won-Deok;Goo, Tae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.508-511
    • /
    • 1991
  • In this paper, we have analyzed the transient and steady state characteristics of buck type DC-DC converter using the sliding mode control method based upon VSS. This control method provides the easier analysis tool due to the time domain analysis and the acquirement of desired transient characteristics if the slope of the switching line is properly selected, and guarantees the robustness against parameter uncertainties and load disturbances. Also, it can achieve direct nonlinear control without linearizing approximation of state space averaging method. PSPICE simulation results are then presented verifying these concepts.

  • PDF

Performance Improvement of Sensorless Vector Control for Induction Motor Drives Driven By Matrix Converter Using Non-Linearity Compensation and Disturbance Observer (비선형 모델링과 외란 관측기를 이용한 Matrix Converter로 구동되는 유도전동기 센서리스 벡터제어의 성능 개선)

  • Kyo-Beum Lee
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.500-508
    • /
    • 2004
  • This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation and disturbance observer. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching device is corrected by a new matrix converter modeling. The lumped disturbances such as parameter variation and load disturbance of the system are estimated by the radial basis function network (RBFN). An adaptive observer is also employed to bring better responses at the low speed operation. Experimental results are shown to illustrate the performance of the proposed system.

A Study on the Distortion Reducing of Output Voltage for UPS by Estimated Load Current (부하전류 예측에 의한 UPS의 출력전압 왜형률 개선에 관한 연구)

  • 변영복;박성준;추영배;권순재;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 1998
  • The uninterruptible power supply (UPS) has become an integral part of modern computer and communication system to assure a continued and stable operation by providing an uninterruptible power to vital equipments. Various control methods have come to the fore in recent times with the advent of high frequency switching technologies. This paper describes the DSP control method for three phase UPS inverter which guarantees the sinusoidal output voltage under nonlinear load conditions. The proposed control scheme is verified by simulation and experiment.riment.

  • PDF

Finite Element Analysis of Electromechanical Field of a Spindle Motor in a Computer Hard Disk Drive Considering Speed Control Using PWM and Mechanical Flexibility (PWM에 의한 속도 제어와 유연 구조를 고려한 컴퓨터 하드디스크 드라이브용 스핀들 모터의 기전 연성 유한 요소 해석)

  • Jang, Jeong-Hwan;Jang, Geon-Hui
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.499-508
    • /
    • 2002
  • This paper presents a finite element analysis of the electromechanical field in the spindle motor of a computer hard disk drive considering the speed control and mechanical flexibility. The driving circuit equation is modified by considering the switching action of PWM inverter, and is coupled with the Maxwell equation to obtain the nonlinear time-stepping finite element equation for the analysis of magnetic field. Magnetic force and torque are calculated by the Maxwell stress tensor. Mechanical motion of a rotor is determined by a time-stopping finite element method considering the flexibility of shaft, rotor and bearing. Both magnetic and mechanical finite element equations are combined in the closed loop to control the speed using PWM. Simulation results are verified by the experiments, and they are in food agreement with the experimental results.

Maximum Power Recovery of Regenerative Braking in Electric Vehicles Based on Switched Reluctance Drive

  • Namazi, Mohammad Masoud;Saghaiannejad, Seyed Morteza;Rashidi, Amir;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.800-811
    • /
    • 2018
  • This paper presents a regenerative braking control scheme for Switched Reluctance Machine (SRM) drive in Electric Vehicles (EVs). The main purpose is to maximize the recovered energy during battery charging by taking into account the nonlinear physical characteristics of the Switched Reluctance Machine. The proposed regenerative braking method employs the back-EMF in the generation process as a complicated position-dependent voltage source. The proposed maximum power recovery (MPR) operation of the regenerative braking is first based on the maximization of the extracted power from the machine and then the maximization of the power transferred to the battery. The maximum power extraction (MPE) from SRM is based on maximizing the energy conversion ratio by the calculation of the optimum PWM switching duty cycle, turn-on, and turn-off angles. By using the impedance matching theorem that allows the maximum power transfer (MPT) of the MPE, the proposed MPR is achieved. The parametric averaged value modeling of the machine phase currents in the chopping control mode is used for MPR realization. By following this model, a nonlinear equivalent input resistance is derived for the battery internal resistance matching. The effectiveness of the proposed regenerative braking method is demonstrated through simulation results and experimental implementation.

Improvement of Chattering Phenomena in Sliding Mode Control using Fuzzy Saturation Function (퍼지 포화함수를 이용한 슬라이딩 모드 제어의 채터링 현상 개선)

  • Yoo, Byung-Kook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.164-170
    • /
    • 2002
  • Sliding mode control, as a typical method of variable structure control, has the robust characteristics for the uncertainty and the disturbance of the nonlinear system. Because, however, sliding mode control input includes a sign function that Is discontinuous on the predefined switching surface, its applications are primarily limited by the need of alleviation or reduction of chattering. In this paper, we propose a chattering alleviation strategy based on a special nonlinear function and a fuzzy system. By using the proposed control scheme, we can reduce the steady state error. Its tracking performance is as fast as that of conventional method using the fixed boundary layer. Especially, in the proposed method, we can adjust the trade-off between the steady state error and the degree of chattering by regulating the proper range of the output variable of the fuzzy system. To verify the validity of the proposed algorithm, the analysis of the control method using the fixed boundary layer and the computer simulations are shown to compare with them.

The Design of Sliding Model Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • To improve control performance of a non-linear system, many other reserches have used the sliding model control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However, this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network. The perturbation estimator based on the fuzzy adaptive network generates the control input of compensating unmodeled dynamics terms and disturbance. And the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluation control performance of the proposed approach, tracking control simulation is carried is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

An Adaptive Fuzzy Current Controller with Neural Network For Field-Oriented Controller Induction Machine

  • Lee, Kyu-Chan;Lee, Hahk-Sung;Cho, Kyu-Bock;Kim, Sung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.227-230
    • /
    • 1993
  • Recently, the development of novel control methodology enables us to improve the performance of AC-machine drives by using pulse width modulation (PWM) technique. Usually, the dynamic characteristic of induction motor (IM) has been represented by the 5-th order nonlinear differential equation. This dynamics, however, can be reduced to 3-rd order dynamics by applying direct control of IM input current. This methodology concludes that it is much easier to control IM by means of the field-oriented methods employing the current controller. Therefore a precise current control is crucial to achieve a high control performance both in dynamic and steady state operations. This paper presents an adaptive fuzzy current controller with artificial neural network (ANN) for field-oriented controlled IM. This new control structure is able to adaptively minimize a current ripple while maintaining constant switching frequency. Especially the proposed controller employs neuro-computing philosophy as well as adaptive learning pattern recognizing principles with respect to variations of the system parameters. The proposed approach is applied to the IM drive system, and its performance is tested through various simulations. Simulation results show that the proposed system, compared among several known classical methods, has a superb performance.

  • PDF